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Abstract

An extended statistical software for the estimation, prediction, and inference of a 

wide variety of standard econometric models is developed to analyze datasets involving 

a large proportion of missing information. This relies on Bayesian sampling-based 

approaches with data augmentation. A generalization of the Bayesian treatment of vector 

autoregressive models is also considered. As a direct by-product, the proposed 

methodology is shown to be a natural and effective way to address the problem of data 

interpolation from intermittent longitudinal surveys which is both conceptually simple, and 

computationally tractable.

We apply the interpolation methodology to bridge the gap between two national 

surveys on the use of private vehicles which are six years apart. This allows us to 

produce quarterly predictions of the three energy components (the average number of 

vehicles, the average distance travelled by each vehicle, and their weighted fuel 

consumption rate) for the intermediary period, between the surveys. Separate estimates 

and predictions are obtained by vehicle type: for cars and for light trucks and vans. The 

same technique could also be directly implemented in other contexts such as 

international database comparisons, population censuses, longitudinal labour force 

surveys, etc.

First of all, survey-based estimates are adjusted with the aim of improving their 

compatibility. Predicted values for the intermediate period are obtained by means of the 

Bayesian method of Gibbs sampling with data augmentation. In order to improve 

efficiency, by making use of all available empirical information, the econometric model is 

estimated on the basis of data from both surveys, while taking into account the middle 

period, between the two surveys’ sampling periods, for which no data exist.
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Based on explanatory variables from external sources, the aggregate 

simultaneous equations model is formulated to account for the relationships among the 

energy components. The model takes into account the dynamics involved in the three 

dependent variable time series. Since the data are aggregated on a quarterly basis, it 

also captures seasonal variations, in addition to the general trends in the series.

Several alternative specifications are compared to determine the best prediction 

model. The generalized vector autoregressive model is shown to yield the most precise 

and reliable results. Convergence of the iterative estimation process and its dependence 

on prior choices are assessed by means of sensitivity analyses. Complete time series 

produced by this empirical analysis will provide more accurate data on which the policy 

makers can rely.

Given that a similar survey is to be done soon, the necessity of obtaining, from 

such intermittent sources, complete time series estimates for the key variables from a 

transportation researcher’s point of view becomes crucial. However, the proposed 

interpolation methodology is not a substitute to a well-designed data collection process, 

but rather a general solution to existing data gaps.
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Chapter 1

Introduction
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The 1992 Rio meeting witnessed world-wide concern about pollution and its 

effects on the environment. More concrete engagements have resulted from the Kyoto 

meeting of the signatories of the United Nations on climate changes in 1997. At that 

meeting, the Canadian government agreed to reduce its greenhouse gas (GHG) 

emissions by 6 percentage points below their 1990 level during the 2008-2012 period. In 

practice, according to Natural Resources Canada (NRCan, 1998), this means that 

emissions of carbon dioxide (C 02), the main GHG,1 must be reduced by nearly 20 

percent.

Transportation currently generates more GHG emissions than any other sector --- 

27 percent of total Canadian emissions — almost as much as the residential, commercial 

and industrial sectors combined.2 Cars, light trucks and vans alone are responsible for 

almost 60 percent of total transport GHG emissions. Among those vehicles, private 

transport accounts for almost 90 percent of all passenger activity, measured by the 

distance travelled by all passengers. Thus, the private transport sector represents a 

large share of total GHG emissions.

Consumers’ holding and use of motor vehicles have been affected by 

governmental policies and private sector actions (Ben-Akiva, Manski and Sherman, 

1981). Major policy changes that have recently been instituted, or are now being 

considered, include vehicle fuel economy and emission standards, fuel, vehicle purchase 

and registration taxes, and safety-related design restrictions. More sporadic actions, 

such as the institution of exclusive lanes for high-occupancy vehicles and public 

transport service improvements, are aimed at reducing private vehicle use in congested 

urban areas. In order to implement careful policy rules to control pollution, the Canadian

1 According to the Quebec Minister of Environment (1999), C 02 emissions represented 80 
percent of overall world-wide GHG emissions in 1996.

2 See the Transportation Table’s Foundation Paper on Climate Change (1998) for a complete 
summary of the available information on transport GHG emissions.
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government must rely on accurate measures of the actual fuel consumption and the 

resulting C 02 emissions attributed to the private transport sector.

An improved understanding of the relationship between energy efficiency, energy 

use, and GHG emissions will assist policy-makers in developing more effective solutions 

to the issues of global climate change, urban smog, and sustainable development. In 

terms of the private transport sector, these solutions involve reducing automobile vehicle 

C02 emissions by encouraging less intensive use and by improving fuel efficiency.

The C 02 emissions are measured by applying emission factors developed by 

Environment Canada (EC, 1997) to fuel consumption. Although EC and NRCan rely on 

slightly different divisions of end-use energy demand by sector,3 both use data from 

NRCan’s Transportation Energy Demand Model (TEDM) to measure private vehicle fuel 

consumption and its main components. It is therefore crucial to obtain reliable measures 

of private transport aggregates in order to estimate accurately present and future levels 

of fuel consumption, as well as Canadian C 02, and hence overall GHG, emissions.

The TEDM factorizes fuel consumption as the product of three main components: 

the number of vehicles, the average distance they travel, and their fuel consumption 

rates. Each variable is measured independently, based on information available at the 

national level. However, the current measures are not based on disaggregate empirical 

data and suffer from severe drawbacks with regard to the limitations and precision of 

available information, unrealistic underlying assumptions, and related data 

manipulations.

Two nation-wide surveys on the use of private vehicles provide important and 

exclusive empirical information to improve upon the actual measurement of private 

transport aggregates. The Fuel Consumption Survey (FCS) sampled cars from the

Those differences do not concern the private transport sector, however.
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fourth quarter of 1979 to the last quarter of 1988, but light trucks and vans for a shorter 

period of time delimited by the fourth quarters of 1981 and 1987. The National Private 

Vehicle Use Survey (NaPVUS) was initiated in the last quarter of 1994, for a period of 24 

consecutive months, to collect information on both types of vehicles. These provide, 

throughout the years, a detailed profile on the use of private vehicles in Canada, 

excluding Northern Territories. Thanks to NRCan, from the intermediary of the 

Automobile Mobility Data Compendium (AMDC), we were the first to have access to 

these data.

From such disaggregate surveys, quarterly estimates of each variable of interest 

can be derived separately for cars, and for light trucks and vans. However, there is a gap 

of almost six years between them, representing nearly 34 percent of the cars sample, 

and 45 percent of the light trucks and vans sample. Furthermore, the two surveys did not 

sample exactly the same classes of vehicles and failed to collect some relevant 

information. Given that a similar survey is to be undertaken soon, there is a striking need 

to reconcile the data and obtain complete time series.

We propose the Bayesian approach as a natural, effective, and relatively simple 

way to handle the general problem. More precisely, we apply sampling-based 

techniques, such as the Gibbs sampling algorithm, to estimate a simultaneous equations 

model involving the three transport aggregates. Adding a data augmentation stage to 

such an iterative estimation process provides predictions for the missing values as a 

direct by-product. Data augmentation fills in the missing information in a completely 

symmetrical and endogenous way, and produces predictions that are coherent with the 

hypothesized econometric model. Furthermore, the method proves to yield satisfactory 

results, even in small sample applications involving a significant share of missing 

information.
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We compare several estimation techniques, model specifications, and prior 

distributions in order to determine the best prediction model. An extended statistical 

software package, based on Fortran programming, is designed to analyze the various 

model formulations which are the most frequently encountered in applied econometrics. 

We propose a generalization of the Bayesian treatment of vector autoregressive models 

that allows for the inclusion of stochastic variables, in addition to deterministic and 

lagged dependent variables, in the model formulation. Asymmetry across the system 

equations is also admissible in this more general setting. The resulting model is shown to 

yield the most reliable and accurate predictions.

The Bayesian sampling-based techniques with data augmentation have a wide 

range of applications in all empirical problems involving missing information. For 

instance, they can be implemented to impute values to unobserved data and obtain 

complete datasets in disaggregate cross-sectional surveys involving non-responses to 

certain questions (e.g. respondent in a household survey who refuses to report salary), 

and panel data (e.g. attrition due to some subjects dropping out before the end of the 

survey), in addition to aggregate macroeconomic time series (e.g. incomplete national 

income figures for some countries). They can also be used to endogeinize latent 

variables (e.g. consumer’s utility) in a qualitative and limited dependent variables 

modelling framework.

The thesis organization is the following. Chapter 2 provides the background 

motivation for undertaking the present analysis and describes the main problem in more 

detail. We present a literature review on the modelling of transport aggregates, as well 

as on the Bayesian sampling-based approaches to estimation and prediction. A 

description of the empirical data is given in Chapter 3. We outline the differences in the 

two surveys’ sampling methodology and data collection process, and account for them in 

order to produce more compatible estimates. Chapter 4 explains how the Bayesian
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sampling-based techniques can be implemented to estimate the simultaneous equations 

model and derive predictions for the missing values in its dependent variable series. 

Chapter 5 provides the basic estimation and prediction results. We first test the Bayesian 

estimation methods’ performance based on simulated data, and then apply them to solve 

our empirical problem. Chapter 6  compares the results obtained from alternative model 

specifications and estimation procedures in order to determine the most appropriate 

candidates for our prediction purpose. We address convergence issues and question the 

underlying prior assumptions for the selected model. Chapter 7 summarizes the main 

findings and conclusions of the empirical study.
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Literature Review
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This chapter reviews the literature on the main themes involved. First, it outlines 

the background motivations for undertaking the present study. We have already stressed 

the importance of assessing precise and accurate data on the use of private vehicles for 

policy making and air pollution control. Section 2.1 examines in detail how these 

aggregates are actually measured, highlighting the main drawbacks and imprecision of 

some underlying data and assumptions. Section 2.2 shows how two nation-wide surveys 

on private vehicle use provide us with exclusive and critical empirical information that 

can help improve the measurement of private transport aggregates. We argue that the 

past research in that direction has yielded misleading or imprecise results either because 

it ignored specifics to each survey sampling field, or because it could not make use of all 

the empirical evidence.

Having provided the justification and reviewed the challenge involved in 

undertaking this study, the main empirical problem is outlined in Section 2.3. Specifically, 

we apply adjustment techniques to reduce the discrepancies between the two survey- 

based estimates and propose econometric estimation and prediction methods to fill the 

gap between them using all available empirical information. A summary of the different 

ways each aggregate is modelled in the transportation literature is described in Section 

2.4. Finally, the Bayesian approach and related sampling-based techniques are briefly 

revisited in Section 2.5. This review leads to a better understanding of the general 

problem and motivates the Bayesian estimation and prediction methods employed for 

this analysis.

2.1. Measurement of fuel consumption in the private transport sector

NRCan’s Office of Energy Efficiency Demand Policy and Analysis Division 

publishes, annually, a document entitled Energy Efficiency Trends in Canada (e.g. 

NRCan, 1997). This document aims at analyzing changes in Canadian aggregate energy
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demand and how they impact on environmental conditions. The empirical facts reported 

in this publication rely on annual data produced by the Transportation Energy Demand 

Model (TEDM), which is also used for prediction purposes and policy analysis. The 

TEDM partitions energy consumption into five main sectors of activity: industrial, 

commercial, residential, agricultural, and transportation. In this model, each energy 

sector is analyzed independently of the others by means of a bottom-up model. This is a 

pyramidal structure in which each stage corresponds to a more or less disaggregated 

level of the total energy demand for that sector. Sectors are thus further divided into sub­

sectors, and the Canadian energy demand is split by province.

The present document is only concerned with the transportation sector. More 

precisely, while the TEDM that accounts for this sector’s demand is further segmented 

into two main components, namely the private and commercial transportation sectors, 

we focus on the private sector. This sector essentially comprises road transportation. 

Therefore, while the TEDM distinguishes among four vehicle modes, road, aviation, rail, 

and marine, we are solely interested in road. Although road transportation is composed 

of four vehicle types, cars, trucks and vans, buses, and motorcycles and mopeds, we 

concentrate on the first two. The bottom-up structure of the TEDM thus allows one to 

focus on the fuel consumption of cars and light trucks and vans that are used for private 

purposes in Canada.

One aim of this thesis is to provide NRCan with more accurate data on private 

transportation. The scope of our analysis is narrowed to private-use cars, light trucks and 

vans because we make use of empirical data from two surveys covering only these 

vehicles. Since we have to improve upon the actual transport aggregates data, a natural 

starting point is to begin by examining how these are currently measured. In particular, 

we wish to stress the weakness and imprecision involved in these measurements that 

our empirical analysis will compensate for.
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The TEDM relies on a basic identity which decomposes total fuel consumption, C, 

into the product of its three main components as follows:

/'n A / ' r  A _
C=S H  i l s D E  (1)

S DV )

where S stands for the corresponding vehicle stock, and D represents the total distance

travelled by these same vehicles. Hence, D=D/S symbolises the average distance 

travelled by each of these vehicles, and E=C/D, their fuel efficiency, or weighted fuel 

consumption rate, expressed in terms of litres by 100 kilometres. Each of these 

components, as well as their product, is measured separately. The distance variable, 

whose measurement accuracy is the weakest, is then computed residually to ensure the 

equality on both sides of the equation.

Data on each of the components of equation (1) are now available for the 1976- 

1997 period. These are measured on an annual basis for Canada as a whole. For the 

private road sector, they are disaggregated by province, vehicle type, size, and model 

year, as well as fuel type. Some of these segmentations have been undertaken quite 

recently. For instance, over the past year, the disaggregation of Canada into seven 

regions has been extended to a ten-province breakdown. Over the same period, new 

sources of information based on registrations have permitted the distinction between 

private and commercial vehicles, in addition to a revised classification of the light vehicle 

stock.

Each variable is derived from different (and sometimes various) sources. Some 

data come from private consultants, but the majority are drawn from Statistics Canada 

(StatCan) catalogues. Note that none of these rely on disaggregate survey-based 

information. Fuel consumption estimates are from StatCan’s Quarterly Report on Energy 

Supply-Demand in Canada (see catalogues no. 57-003) and are based on fuel sales as 

reported by Canadian distributors. Lab-tested fuel consumption rates (FCRs) are
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estimated by the automobile manufacturers as reported in the Vehicle Fuel Economy 

and Emissions System (VFEES) and the Vehicle Fuel Economy Information System 

(VFEIS)1.

Two sources, both based on provincial registration files, are used in determining 

the number of vehicles: The Canadian Vehicle in Operation Census (CVIOC) provided 

by Desrosiers Automotive Consultants covers the 1989 to 1997 period, while the Truck 

Information Profile (TIP) provided by Polk Canada only goes from 1994 to 1997. In order 

to extrapolate the data to the uncovered period, NRCan makes use of new vehicles 

sales and survival curves2 to evaluate, respectively, the inflow and the outflow from the 

previous vehicle stock. StatCan’s monthly reports on New Motor Vehicle Sales 

(catalogues no. 63-007-XIB) yield basic evaluations of new vehicle sales. StatCan’s 

annual reports on Trucking in Canada (see catalogues no. 53-222-XPB) provide further 

information on the total sales of new trucks. Finally, predictions are calibrated to meet 

the general trend in registrations, as displayed in StatCan’s annual reports on Road 

Motor Vehicles, Registrations (see catalogues no. 53-219-XIB).

The profusion of sources renders the data reconciliation difficult. Most of these 

sources collect provincial information which is aggregated afterwards. This raises the 

necessity of accounting for inter-provincial discrepancies in regulations and vehicle 

classifications. Apart from fuel consumption data which takes into account inter­

provincial transfers, no consideration is devoted to double-counting that may result from 

vehicles’ inter-provincial migrations. According to StatCan standards, provincial

1 Since 1994, the name of the VFEES database has been changed to VFEIS as it does not 
include information on carbon dioxide emissions anymore.

2 Survival curves come from the National Energy Board (NEB) model. We were unable to 
obtain details on the NEB model from NRCan, apart from being told that this was an old 
empirical model relying on evidence from the 1970’s. It seems that no precise reference 
exists on the underlying assumptions of this model which is nevertheless widely used 
internally.
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estimates are not reported whenever confidentiality might be violated, leading to 

downward bias in total estimates.

The fact that data are available at different levels of aggregation, or for distinct 

categories of vehicles, raises additional merging difficulties. For instance, lab-tested 

FCRs which are available on an annual basis for each model of vehicle must be merged 

to new registrations as reported by each province every year. Then, weighted averages 

of lab-tested fuel efficiency have to be computed to meet each segment of the vehicle 

stock considered by NRCan. Finally, lab-tested FCRs are adjusted in order to better 

reflect the on-road vehicle fuel efficiency.

In all of the above mentioned publications, StatCan uses a misleading 

classification of on-road vehicles distinguishing “passenger automobiles” from “trucks 

and truck tractors”.3 Taking the terminology as proposed does not allow one to 

discriminate light trucks from medium and large ones.4 According to the definitions 

provided at the beginning of StatCan’s catalogues, however, the “passenger

automobiles” class includes cars, light trucks and vans that are used for private

purposes, while the “trucks and truck tractors” class refers to commercial-use cars and 

trucks. In this sense, the classification provides a better partitioning of vehicles by use 

than by type. But this does not even yield a perfect breakdown of the vehicle stock by 

use because cabs are included in the private vehicle category.

Under this classification, most minivans will be part of the “passenger

automobiles” class, as they are mainly used for private purposes. However, in the

TEDM, minivans are assigned to light trucks as their fuel consumption better relates to 

this category of vehicles. This further biases estimates of the number of vehicles

3 Refer to Boucher (1998a) for a complete explanation.
4 This appears to be the current practice at NRCan which bases the partitioning between light 

trucks and medium and heavy trucks on the disputable assumption that it is the same as in 
the U.S.
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according to their type derived from registrations (in favour of a larger car fleet) and 

yields misleading fuel consumption estimates. For instance, when lab-tested FCRs are 

merged with registrations of new vehicles, cars (including minivans) weighted fuel 

efficiency estimates are lower than they should be under the TEDM classification.

The need to have even finer levels of disaggregation to meet NRCan’s desired 

vehicle stratification, often leads to the use of unrealistic or simplifying assumptions, or to 

adopt ad hoc rules based on more or less arbitrary numbers. For instance, it is assumed 

that the average distance travelled by private-use vehicles has remained constant since 

the 1970’s. This is, of course, an unrealistic assumption, as average distance travelled 

has historically increased.5 Disaggregation of trucks according to their size relies on the 

U.S. partitioning of the vehicle fleet which does not necessarily apply to Canada. To split 

fuel consumption according to vehicle types, fixed personal use shares are applied to the 

total energy consumed, by means of an ad-hoc rule. Each lab-tested FCR is multiplied 

by an arbitrary factor of 1.2 in order to better reflect the on-road fuel efficiency of light 

vehicles.6

There are other problems with the manipulations operated on NRCan’s data, but 

it is sufficient it to say that these calculations are based on rather unrealistic, unjustified, 

too simplistic, or at least questionable hypotheses. Their application may result in 

inaccurate or imprecise estimates of the transport aggregates. Some even lead to 

sizeable inconsistencies. For instance, survival curves, used to determine how the 

existing stock ages and eventually lapses, turned out to be completely flat, for some 

years, as if the vehicle would last forever. This indicates a contradiction between the 

predicted stock, as derived from the registration files, and the sales of new vehicles, as 

reported by StatCan.

5 This is confirmed by survey-based data used in Chapters 3 through 6.
6 Apparently, the 1.2 factor also comes from the NEB model.
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As argued throughout this section, actual measurements of the private transport 

aggregates suffer from several serious drawbacks. The following section shows how the 

release of new empirical information opens up avenues for improvement.

2.2. Evidence from survey-based data

Two national surveys have been undertaken by StatCan in order to collect 

empirical information on the private transport aggregates. These surveys will help 

governments and interested parties to better monitor and analyse trends in fuel 

consumption and GHG emissions from the private vehicle sector. The Fuel Consumption 

Survey (FCS) took place in the 1980’s and covers a period of almost ten years. The 

National Private Vehicle Use Survey (NaPVUS) was then undertaken in the mid-1990’s 

for a period of 24 consecutive months.

The FCS and the NaPVUS are primary sources of longitudinal information in 

studying the vehicle fleet in Canada. An Automobile Mobility Data Compendium (AMDC) 

report (Boucher, 1998a) showed how few sources of this kind were available and how 

difficult it was to reconcile data from some of those sources. Therefore the generation of 

complete time series based on the two national private vehicle use surveys will be very 

useful. These surveys will be described in detail in Chapter 3. Here, we simply present 

the first empirical results based on both survey estimates that are relevant for this study.

2.2.1. Natural Resources Canada’s news release

Following the first estimation results derived from the NaPVUS for the fourth 

quarter of 1994, NRCan issued a news release on October 2nd, 1996. The news release 

provided the first comparisons between the two surveys’ estimates. The release 

contrasted FCS estimates for the fourth quarter of 1987, last year during which the FCS 

surveyed both cars and light trucks/vans, with the first NaPVUS estimates.
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Initial comparisons outlined important increases in private vehicle use in Canada 

during the six years separating the two survey sampling periods. According to the news 

release, while fuel efficiency witnessed some noteworthy improvements (of 2.1 percent a 

year, on average), the average distance travelled by Canadians increased by 17.2% 

from the last quarter of 1987 to the last quarter of 1994, for an annual increase of 2.5%. 

The huge gap worried NRCan considerably, considering the fact that intensity rose faster 

than efficiency over the same period.

2.2.2. First forecasting trials

A previous study undertaken by the AMDC for NRCan illustrates how difficult it is 

to extrapolate survey-based estimates to the intermediary period, between the two 

surveys. This study, which was only concerned with predicting the fuel consumption of 

private-use vehicles (cars and light trucks and vans all together) up to 1994, revealed 

that predictions solely based on the FCS data were highly unreliable given that the 

prediction period was almost as long as the historical records. Furthermore, whenever 

the first results based on the NaPVUS data for the fourth quarter of 1994 became 

available, predictions were found to underestimate substantially the fuel consumption for 

that quarter.

First attempts to predict quarterly fuel consumption based on the FCS data only 

are summarised in Bonin and Bernard (1996). Linear regression models, including 

lagged dependent variables, and autoregressive moving average (ARMA) models were 

specified. In addition to lagged dependent variables, other explanatory variables such as 

net quarterly fuel sales (pump sales), average unleaded fuel price, unemployment rates, 

and the gross domestic product (GDP) of some industries were included in the 

specification. The variables that were found to have a significant effect (at conventional
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levels) on fuel consumption are the four-period lagged fuel sales and the GDPs of the 

retail trade and service industries.

As will be argued in Chapter 3, the conclusions of the news release and Bonin 

and Bernard’s report are somewhat mitigated by the fact that they ignore the inherent 

differences between the two surveys’ sampling methodology. As will be shown in 

Chapter 3 once these differences are accounted for, the estimates from both surveys are 

more easily reconcilable. One important contribution of the present study is in the 

adjustment methods aimed at reducing such discrepancies in order to produce 

compatible estimates. The next section outlines the purpose of our empirical analysis 

and the way it will proceed to achieve its goals.

2.3. Bridging the gap between the two surveys

We propose a way to fill the data gap between the two national surveys on the 

use of private vehicles. Our goal is to produce quarterly predictions of the three energy 

components, the average number of vehicles, the average distance travelled by each of 

these vehicles, and their weighted fuel consumption rate for the period between the FCS 

and the NaPVUS. From these, consistent and complete estimates also can be obtained 

for the total distance travelled by all vehicles and their overall fuel consumption. 

Separate estimates and predictions will be obtained by vehicle type: for cars and for light 

trucks and vans in isolation. These will provide more accurate data for use by NRCan 

and others.

In order to improve efficiency by making use of all available empirical information, 

the econometric model will be estimated on the basis of data from both surveys, 

accounting for the fact that no data exist for the middle spell, between the two surveys’ 

sampling periods. Since survey data are not available for the intermediary period, 

complete series of explanatory variables will be drawn from external sources to help
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forecast. Note that the primary interest here is to obtain accurate predictions of the 

transport aggregates, but not to estimate a structural econometric model for such 

variables.

Aggregate demand modelling is considered since only the NaPVUS information 

would allow for a more disaggregated, household-based approach, which would not be 

appropriate for prediction purposes, anyway. First of all, survey-based estimates must be 

modified by a series of adjustments to make them more comparable. The prediction 

model must take into account the dynamics involved in the three dependent variable time 

series. Since the data are aggregated on a quarterly basis, it must capture the seasonal 

variations, in addition to the general trends in the series.

The next two sections explain in more detail how we proceed. We revisit the 

literature on modelling the transport aggregates in order to determine which econometric 

model is the most appropriate for our purpose. Then, we review the econometric 

methods that will be used to estimate the model and derive predictions for the missing 

data.

2.4. Modelling fuel consumption

Transportation literature has proposed many econometric models for fuel 

consumption (C) and its three main components: vehicle stock (S), distance travelled (D) 

and fuel efficiency (E). While the primary interest is on modelling the aggregate time 

series, we also review some of the related disaggregate studies in order to draw a more 

general picture of the issues involved in modelling these series and to get some insights 

on the explanatory variables that such models usually involve.

Dahl and Sterner (1991) provide a survey of empirical work on fuel consumption. 

An indirect way of modelling fuel consumption (e.g. see Schimek, 1996, for an aggregate 

application and Hensher, 1986, for a disaggregate one) is by modelling simultaneously
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its three main components (vehicle ownership, characteristics and use) and then deriving 

fuel demand from an identity such as expression (1)7 The main advantage of this 

approach is to produce separate price and income effects for each fuel component while 

explicitly accounting for interactions between them. It is appropriate in the present 

framework since we are not only interested in producing predictions for the total amount 

of fuel consumed, but also for each of its components.

Disaggregated studies (e.g., see Mannering and Winston, 1985; Hensher and 

Milthorpe, 1987) suggest a strong relationship between ownership and use decisions 

implying that they should be modelled jointly. Wheaton (1982) and Hensher (1986) also 

acknowledge the importance of considering jointly fuel efficiency and distance travelled. 

Therefore, the three variables must be embedded in a simultaneous equations model 

which yields estimates of fuel consumption as a by-product. We now turn to examining 

how each component of the system may be modelled.

The first attempts to forecast the aggregate number of private-use vehicles 

consisted of extrapolations of historical trends based on some hypotheses regarding the 

evolution of the population. Later on, growth curve models (e.g. Whorf, 1973; Davis and 

Mogridge, 1976; and Tanner, 1978) aimed at predicting the vehicle ownership rate as a 

logistic function of time and a saturation level. Botton and Fowkes (1977) outline the 

drawbacks of this approach. Although Davis and Mogridge and Tanner use growth rate 

models, they even raise doubts about the existence of such saturation levels.

7 Reza and Spiro (1979) undertook a slightly different approach by simultaneously modelling 
the demand for passenger cars, miles travelled, and car attributes, the latter being measured 
as the average weight of cars. The vehicle weight is often used as a proxy for its fuel 
efficiency, so the two approaches as very close to one another. Still, the fuel consumption is 
determined as the product of the number of vehicles, the distance they travel and their fuel 
consumption, the latter component being taken as given (exogenous).
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Both Gallez (1994) and Jorgensen and Wentzel-Larsen (1990) underline the 

importance of including a lag structure in ownership models and the need to account for 

the saturation effect. Applying the stock-adjustment concept first introduced by Chow 

(1957) and Nerlove (1957) to the demand for durable goods such as private-use 

vehicles,8 has provided an effective mechanism for determining the vehicle stock in a 

current period as a function of the sum of the previous stock, the incoming flow of new 

vehicle purchases, and the outgoing flow due to scrapage. Mellman (1975) and Ayres et 

al. (1976) provide surveys of these applications. Ben-Akiva, Manski and Sherman (1981) 

outline the main deficiencies of using the stock-adjustment approach for modelling 

vehicle ownership. Purvis (1994) also gives useful references to papers discussing 

aggregate automobile ownership modelling and saturation levels.

Train (1986), Mannering and Winston (1985), and Jorgensen and Wentzel- 

Larsen (1990) consider a discrete-continuous choice model system to estimate the joint 

ownership and use (distance travelled) decisions. The ownership equation is then used 

to calculate an inverse Mills ratio (Heckman, 1978) that is incorporated in the distance 

equation in order to correct for the selectivity bias due to limited availability of private-use 

vehicles. In these empirical studies, once other factors are accounted for, the selectivity 

term is insignificant at conventional levels. Hensher and Milthorpe (1987) further argue 

that if the interest is in predicting actual, as opposed to potential, distance travelled, 

Heckman’s correction procedure is not necessary.9

Among others, Jorgensen and Wentzel-Larsen (1990) acknowledge the importance of 
considering a vehicle as a durable good and its purchase as an investment.
Based on Duan et al. (1984, p. 286), their argument is that when actual use is the main 
concern, the specification of the use equation can be limited to the randomly selected 
vehicle, but not on the use of other vehicles from the household’s vehicle fleet, for instance.
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Wheaton (1982) applies a similar method to aggregate cross-sectional data. He 

formulates a structural model in which the mileage equation is a function of the number 

of vehicles, their fuel efficiency, and some exogenous variables. Hypothesising that no 

contemporaneous correlation exists among the error terms of the three system 

equations, equation-by-equation OLS estimation may be undertaken. Wheaton tests this 

assumption by instrumenting out possibly endogenous variables and found no evidence 

of correlation based on such tests. While dealing with time series data, one must also 

account for the possibility of serial correlation (e.g., see Reza and Spiro, 1979).

In the context of aggregate simultaneous equations, each equation is usually 

specified in a linear or log-linear form. According to Wheaton (1982) and Dahl (1986), 

Box-Cox tests generally favour the log-linear specification for the stock and total distance 

equations, but the linear form for fuel consumption rates and average distance travelled. 

Each equation includes indicators of income and gasoline prices (Wheaton, 1982; Dahl, 

1986; Dahl and Sterner, 1991). While prices of vehicles typically appear only in the stock 

equation, Wheaton also includes them in the fuel efficiency equation, in addition to an 

indicator for the level of urbanization. Wheaton and Hensher (1986) account for the 

potential impact of the vehicle fuel consumption rates on the distance they travel.

Both Gallez (1994) and Schimek (1996) find that income has a stronger effect on 

use than on ownership. De Jong (1990) distinguishes among fixed and variable costs 

associated with holding and using a private vehicle.10 He finds that fixed costs are critical 

to the ownership decision, while variable costs mainly affect the intensity of use. Hensher 

and Milthorpe (1987) further differentiate fuel costs from other kilometre-dependent 

recurrent costs (discretionary maintenance and repair costs). These effects are not

10 While this is a disaggregate cross-sectional analysis, fixed and variable costs are assumed 
to be the same for every household in order to produce homogenous aggregate costs. 
Furthermore, it is assumed that fixed costs only have an income effect.
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separable, however, as they find that only recurrent costs are significant in the use 

equation, while fuel costs are relevant solely to the ownership decision.

Disaggregate studies of vehicle ownership (e.g. Ben-Akiva, Manski and Sherman, 

1981; Mannering and Winston, 1985; De Jong, 1990; Prevedouros and Schoffer, 1992) 

also suggest that socio-economic and demographic factors such as the number of 

(members by) families or households, the population age and gender distribution, the 

unemployment rate, the number of driving licence owners and the population density in 

rural versus urban areas and land use might also have an effect on the private vehicle 

fleet size. Some of these analyses also highlight the importance of accounting for the 

fares and the quality of public transport services in this framework.

According to disaggregate studies such as those of Hensher (1986) and Hensher 

and Milthorpe (1987), the same kind of explanatory variables may have an impact on the 

distance travelled as well. Jorgensen and Wentzel-Larsen’s paper (1990) further 

suggests that the proportion of business registrations might also matter via a substitution 

effect which operates between private- and commercial-use vehicles, the latest incurring 

no variable costs to the user.

More technical studies, such as the controlled experiment reported in Redsell, 

Lucas and Ashford (1993), reveal that the distance travelled, seasonal variations, 

temperature and other climatic conditions (see also the Organization for Economic 

Cooperation and Development, 1982, 1985; Chang et al., 1976; Eccleston and Hum, 

1979; Fwa and Ang, 1992) affect fuel consumption rates.

Dahl (1986) and Dahl and Sterner (1991) acknowledge the difficulty of obtaining 

accurate price and income elasticities with quarterly data. Their argument is that 

seasonal variations complicate matters and models based on such data can capture, at 

best, short-run elasticities, which are generally smaller than their long-run counterpart. 

However, the primary interest here is in obtaining good predictions for the three fuel
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consumption aggregates, not necessarily accurate individual estimates of the structural 

parameters.

Moreover, the iterative procedure, which we will make use of, produces the 

predicted values one period after another, so reliable short-run estimates are sufficient in 

the present context. While some studies dealing with quarterly data, such as that of Reza 

and Spiro (1979), apply seasonal adjustments to the data, our model must also account 

for quarterly variations in order to produce accurate predictions which vary from one 

quarter to the next. Hence, the model specification will account for seasonal variations by 

explicitly incorporating seasonal dummy variables and possibly other quarterly 

explanatory variables as well.

The simultaneous equations model proposed by Schimek (1996) seems the most 

appropriate to analyze jointly the three energy components. The following section 

proposes an econometric approach to estimate such a model and derive predictions of 

the dependent variables out of it.

2.5. Estimation and prediction techniques

A simultaneous equations model will thus be formulated to analyse the three 

energy components. The model specification will have to rely on external data sources, 

given the lack of survey data covering the intermediate period, between the two surveys. 

A dynamic structure will be embedded into the model in order to account for the trends 

and seasonal variations in the quarterly time series. The estimation technique will have 

to account for the relationships among the vehicle ownership, type and use decisions 

under the assumption of correlated errors. Furthermore, the estimation process must 

also account for the fact that the dependent variable series involve missing values for the 

intermediate period in order to produce predictions for the missing data.
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2.5.1. The Bayesian approach

A natural way of dealing with the estimation problem is to use Bayesian sampling- 

based approaches. The main advantage of these approaches lies in their relative 

simplicity of application in the present context. In particular, they present an 

advantageous alternative to the classical econometric methods, such as standard 

maximum likelihood (ML) estimation techniques, which would have to be applied to a 

very complex recursive model in order to account for missing observations in the time 

series.

The Bayesian method includes, in addition to the empirical information comprised 

in the likelihood function, the investigator’s experience and beliefs about the prior 

distribution of the parameters within the estimation process. Moreover, instead of 

restricting itself to some particular statistical characteristics of the parameters, which are 

of secondary importance, the Bayesian approach allows for the estimation of the 

parameter distribution (including the distribution of missing observations) in a completely 

natural and symmetric way.

Zellner (1971) summarises the earlier applications of the Bayesian method whose 

foundation lies on the Bayes formula which factorizes p(0IZ), the posterior density of the 

parameters, 6, given the observations matrix, Z, as follows:

p(e[z)=L(z^ y e> (2)

where p(0) represents the prior density of 0, L(ZI0) stands for likelihood function, and 

p(Z) corresponds to a normalizing constant which insures that the posterior density 

integrates to unity.
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Since the normalizing constant appearing in the denominator of formula (2) does 

not depend on the model parameters in any ways, it can be left out of the analysis so 

that the estimation process relies solely on the numerator’s product:

p(eiz)°c L(zie)p(e) (3)

The product of the likelihood times the prior is called the kernel of the posterior density 

and we say that the posterior density is proportional to this product.

Although the posterior density summarizes all the relevant information regarding 

the parameters and the data, it is sometimes required to obtain a single point estimate 

for each parameter of interest, on which one can condition on to take other decisions. 

This is accomplished by introducing a risk function that measures the cost of basing the 

decision on this point estimate rather than on the true value of the parameters. A 

Bayesian point estimate is then obtained by calculating the expected value of the risk 

function, given the posterior density of the parameters. For instance, under a quadratic 

risk function, a point estimate of a function, r(0), of the model parameters is simply the 

expected value of this function over all admissible values of 0:

E[r(0) I Z ]=  Jr(9)p(01 Z)d6 (4)

2.5.2. Sampling-based techniques

In most applications, 0 is a vector rather than a scalar and accordingly, the 

computation of the expectation (4) involves the evaluation of multidimensional integrals 

of complex expressions which do not have analytical solutions. Numerical integration 

(also known as Monte Carlo integration) may be applied in cases where the parameters 

have a proper posterior distribution function from which random variables can be easily 

sampled. Given {01,...,0n}, a random sample from the joint posterior density, the method
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produces an approximation of the desired expectation by replacing integrals by 

summations over the random draws:

E [r(0 )lZ ]» - £r(e'') (5)
n i=i

Whenever only the kernel of the parameter density function is known, however, 

more sophisticated techniques, such as importance-sampling (section 5.4 in 

Hammersley and Handscomb, 1964; Kloek and van Dijk, 1978; Rubin, 1987, 1988) or 

Monte Carlo Markov Chain (MCMC) approaches, are required. Sampling-based (or 

MCMC) techniques are iterative processes that allow one to generate random variates 

from the joint posterior distribution of the parameters by using simpler alternative 

distributions. Values so generated in each iteration are not independent, but rather form 

a Markov Chain.11 The Bayesian estimate is then calculated as the means of the random 

variates generated in the last iterations. Usually, a certain number of iterations (called 

the burn-in period) are skipped in order to leave the algorithm some time to converge 

and hence reduce the influence of the choice of the starting values on the resulting 

estimates.

Under certain regularity conditions, the parameter estimator generated in this way 

is convergent. According to Stokey, Lucas and Prescott (1989), if the Markov chain is 

ergodic,12 convergence occurs. Since the draws are not independent, an estimate of the 

variance of a parameter estimate cannot be calculated as the empirical variance of the 

values computed over the consecutive draws. Geweke (1992) provides methods to 

assess the accuracy of functions of the parameters based on spectral analysis. Standard

11 The sequence {0'} of random variables form a Markov chain of order p if its conditional
distribution can be written as follows: p(0‘ie''1,...,0o)=p(0'l0''1.....0''p), for all i>p.

12 A stationary sequence {01} is ergodic if, for any two bounded mappings Y:9ip-»9t and
Z:9?q->9t, l in w  IE[Y(0' 0kp) Z(0i+n,..„ 0i+rKq)]l = IE[Y(0'.....0i+p)]l lEfZf©1......0i+q)]l.
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methods for estimating the variance of functions of the parameters under the posterior 

are proposed in Carlin and Thomas (2000, pp. 170-172).

Gordon and Belanger (1996) and Gelfand and Smith (1990) summarize the main 

MCMC techniques among which the Gibbs sampler (Geman and Geman, 1984), 

constitute the simplest, and most widely used, representative. Starting from arbitrary 

values, 9=0°, of the parameters vector, 0=(91’, 02’,..., 0j’)’, the technique consists in

generating, at the ith iteration, a series of random variates, 0-, from their conditional

posterior distributions, given the most updated values of the other parameters:

©j ~ p(eJ ie i1,0l>,ei3,...,elJ_1,z)

The method is implementable and most efficient whenever the conditional posterior 

distributions have simple standard forms from which random variates can easily be 

drawn, while the joint posterior distribution is much more complicated.

Under mild regularity conditions, this algorithm yields values of the parameter

vector such that if the series ’, 02 ©j s) t i  converges after n iterations, then

the statistics (1/N ) XEJ1+1 r (©') will converge almost surely to E[r(0)IZ], where N>n.13

Roberts and Smith (1994) provide necessary regularity conditions for that type of MCMC 

technique to converge. According to Gordon and Belanger, a sufficient (but not 

necessary) condition would be that the conditional posterior distributions, p(0jl0-j,Z) be 

positive for all values of 0j, and for all j=1,...,J.14 In terms of prediction performance, the

13 A sequence {£} of vector-valued random variables £ is said to converge almost surely to a 
limiting random variable £, if Pr{ limn_*4'=4}=1.

14 The Gibbs sampling draws always form a Markov chain of first order. When conditional 
distributions are positive, the chain is also ergodic.
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Gibbs sampler generally out performs the importance-sampling method and is less 

adversely affected by the model size.15

The Gibbs sampling method is particularly suitable in the present framework 

since it allows one to make use of the recursive structure of the model in the estimation 

process, rather than having to estimate all of the parameters simultaneously. This

feature is especially desirable whenever it is combined with a data augmentation

process, as discussed below. Although the Gibbs sampler is known to yield good results 

in practice (see, e.g., Gelfand and Smith, 1990; Kadiyala and Karlsson, 1997), it typically 

has a slow rate of convergence, especially whenever the draws are highly correlated 

across successive iterations. Geweke (1988) suggested a technique consisting in using 

antithetic draws that aims at improving its convergence rate. By drawing pairs of

negatively correlated values of the parameters in each step, instead of randomly

sampling from the conditional posterior distributions, the technique reduces the 

numerical variance of the estimates, hence accelerating convergence of the algorithm.

The Gibbs sampler may also be combined with other MCMC techniques such as 

the importance-sampling algorithm, the Metropolis-Hastings (M-H) algorithm (see 

Metropolis et al., 1953 and Hastings, 1970, for foundations but Chib and Greenberg, 

1995, for an intuitive and understandable introductory treatment) or the data 

augmentation procedure (Tanner and Wong, 1987) if necessary. The intuition behind 

Tanner and Wong’s data augmentation procedure consists in considering missing values 

of some random variable as additional parameters to be estimated. Together with the 

Gibbs sampling process, data augmentation enables, in each step of the iterative 

scheme, the computation of these additional values given the most updated values of the 

other parameters and the postulated formulation of the model. Once again, the recursive

15 See Kadiyala and Karlsson (1997) for empirical comparisons.
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structure of the procedure makes it relatively simple to implement. Just as for other 

parameters, estimated values for the missing observations can be derived by averaging 

the values computed in each steps, after having skipped a certain number of turns for 

the algorithm to yield convergent estimates. In our framework, predicted values of the 

dependent variables for the intermediary period can be derived in this way.

The last section describes in more details how these methods will be 

implemented in our empirical framework in order to produce the desired estimation and 

predictions. This will be done in Chapter 4. Chapter 5 will provide the empirical results.

2.5.3. Applications

With regard to prior distributions for the parameters, many choices are possible. 

An investigator may make the choice based on past experience and knowledge about 

the phenomenon under study, as well as on the ease of computations. Some priors are 

called uninformative because they impose the least restrictive structure on the parameter 

values. Uninformative priors have the main disadvantage of leading to improper posterior 

densities that do not integrate to unity, but rather diverge. Alternatively, informative priors 

may be specified in such a way that the posterior densities are well-defined. One special 

class of informative prior, the natural conjugate prior, is often used, in practice, in 

conjunction with MCMC techniques. This has the special feature of leading to conditional 

posterior distributions that have the same form as the postulated prior distributions. The 

application of the Gibbs sampling procedure, for instance, is thus simplified by 

postulating natural conjugate priors which have standard forms from which random 

variates can easily be drawn.

Along the lines of Schimek (1996), we postulate a simultaneous equations model

for the three transport aggregates of interest: S, D , and E. We assume a linear form for 

such a system, for reasons of convenience. Since our primary interest lies in obtaining
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predictions for the three dependent variables, we concentrate on the estimation of the 

unrestricted reduced form of the system, rather than on its structural form.

We have applied, in turn, the Gibbs sampling method with data augmentation to 

the following kinds of models in order to produce the predictions. First, assuming that the 

error terms of the three equations were independent from each other and from period to 

period, we considered a reduced form of the structural model. For each equation 

separately, a linear regression model, possibly involving lagged dependent variables to 

account for the serial correlation in the quarterly survey data, has been estimated. We 

hypothesized the Normal-lnverted-Gamma natural conjugate prior (Zellner, 1971) for the 

reduced-form model parameters and the parameter representing the variance of the 

error term, respectively.

The assumption of independence was then partly relaxed, allowing for an 

autocorrelation structure of order four (AR(4)) in the error terms of a given equation. 

Following Chib (1993) and Chib and Greenberg (1994), the additional autocorrelation 

parameters were assumed to follow a prior Normal distribution, truncated at the 

stationary region. Note that in order to include the initial observations in the estimation 

sample instead of conditioning on them, the autocorrelation parameters were computed 

via a M-H step.

Estimation of a simultaneous equations model has then been undertaken in order 

to allow for possible relationships among the equations. At first, a seemingly unrelated 

regression model (SUR) has been formulated (Zellner, 1971, Gordon and Belanger, 

1996). A natural conjugate prior for such a model involve a multivariate Normal 

distribution for the model parameters, and an Inverted-Wishart distribution for the 

variance-covariance matrix of the error terms. This combination of priors is simply an 

extension of the previous priors to the multivariate case.
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We have also estimated a pure vector autoregression (VAR) model involving 

only, in the specification of each equation, lags of the three dependent variables and 

deterministic explanatory variables (namely, a constant and seasonal dummy variables). 

Litterman (1986) favours Bayesian estimation of VAR models over classical estimation of 

structural econometric models for forecasting purposes. Kadiyala and Karlsson (1997) 

contrast prediction performances reached with different MCMC methods and prior 

choices in this framework. Finally, we have generalized Kadiyala and Karlsson’s method 

to handle stochastic explanatory variables in addition to deterministic variables.

The comparative advantages of the VAR model setting are many. In both 

classical and Bayesian analysis, it is easier to estimate than the competing simultaneous 

equations or the autoregressive moving average (ARMA) models (Kadiyala and 

Karlsson, 1993). In particular, it avoids the identification problems which may arise due 

to parameter equality restrictions, on the one hand, and the necessity of choosing the 

exact number of autoregressive and moving average components to include into the 

model, on the other hand. Furthermore, a Bayesian treatment of the VAR model 

circumvents the degrees-of-freedom difficulty frequently faced by the classical 

approach.16

In ail cases, the methods described in the literature had to be generalized to 

include a data augmentation stage aimed at computing the predicted values of the 

dependent variables for the intervening period. Whenever the econometric model 

involves lagged dependent variables as regressors, this complicates matters since the

16 Litterman (1986) argues that in the Bayesian specification framework, there is no trade-off 
between decreasing bias (by adding more explanatory variables) and increasing variance (by 
narrowing the degrees of freedom margin, given the limited number of observations) 
because the loss function is minimized by including all relevant variables along with their 
priors. Although he acknowledges there is a practical limit to the number of such variables, 
he stresses that this limit is dictated by computational feasibility, but not by the lack of 
degrees of freedom. Kadiyala and Karlsson (1993) go along with Litterman in saying that the 
Bayesian approach handles large VAR models more easily than classical econometric 
methods.
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predictions obtained for a given period will enter as predictors. This is the chain rule of 

forecasting described by Litterman (1986). It is thus to be expected that predictions at 

the beginning of the prediction period will be more precise and accurate than those 

obtained at the end of it because the former ones will rely on observed lagged values of 

the dependent variables, while the latter ones will be constructed from predicted values 

of the dependent variables. The very last predictions will thus involve a building-up of the 

prediction errors, summing those of past predictions in addition to the current one.

For a stationary ergodic process, however, the effect of past values on future 

ones decreases with the time interval between them. Therefore, recent prediction errors 

should have a larger impact on current predictions than more dispersed ones, and so 

their sum should be bounded above. We thus expect predictions at both ends of the 

prediction spell to be more accurate than those in the middle of the interval between the 

two surveys.

Chapter 6 will compare the results obtained from the estimation of alternative 

model formulations in order to determine the one yielding the most reliable and accurate 

predictions. It will also question the underlying assumptions.
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This chapter describes the preliminary stage of data processing performed on 

survey-based data. Recall that we are interested in deriving compatible estimates for the 

number of private-use vehicles, the average distance they travel, and their weighted fuel 

consumption rates from both surveys. Separate estimates are produced for cars and for 

light trucks and vans. These incomplete time series will then be used, in subsequent 

chapters, as dependent variables for an energy demand simultaneous equations model 

in order to predict values for the intermediary period between the two surveys.

The next section describes the surveys in detail. Section 3.2 explains how the 

variables of interest are calculated for this study. The preliminary stage to data 

processing consisting of imputing a fuel consumption to some observations for which it 

cannot be calculated directly from the answers to the survey questionnaires is described 

in Section 3.3. Section 3.4 identifies the main differences between the two surveys. The 

two following sections propose a series of adjustments that were applied to the raw 

estimates from each survey in order to account for those differences and produce 

compatible estimates.

3.1. Survey data

Following the Second Oil Crisis, Statistics Canada (StatCan) undertook the FCS 

for the account of Transport Canada. To perform this survey, which covers a period of 

nearly ten years, StatCan randomly drew samples from the provincial registration files1 

that already provide detailed information on the features of selected vehicles. A diary 

was then sent by mail to the owner of the sampled vehicle in which he was responsible 

for reporting all fuel purchases performed for this vehicle during a full month, flags 

indicating if these sufficed to fill in the gas tank, the purchasing dates, the unit fuel prices,

1 A more global study of the Canadian private transport sector would have to include both 
Norther Territories and incoming traffic and fuel purchases from across borders (in particular, 
from the U.S.).
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the type of fuel purchased, and the number of kilometres written on the odometer, at the 

same time.

The FCS covers the period from the fourth quarter of 1979 to the last quarter of 

1988 for cars, while data on light trucks and vans were only collected from the fourth 

quarter of 1981 to the last quarter of 1987. The survey was then interrupted as, as 

reported StatCan in its first report on the NaPVUS, “the oil crisis had passed and 

concerns about petroleum reserves had been further mitigated by new oil discoveries, 

new oil extraction technologies and more fuel efficient vehicles”. Preoccupied by the new 

environmental issues of fuel pollutant emissions, the Canadian Minister of Natural 

Resources (NRCan) requested that StatCan undertake the NaPVUS. This survey was 

designed to be an improved version of the FCS, and to be undertaken under sequential 

episodes, rather than on a regular basis. It took place from the last quarter of 1994 to the 

third quarter of 1996, and is expected to be repeated soon.

The NaPVUS sampling unit is the household, randomly drawn the Labour Force 

Survey (LFS) sample. The characteristics of the household, its vehicle fleet, and the 

general use made out of it were first collected via a Computer Assisted Telephone 

Interview (CATI). A vehicle was randomly selected among the household’s vehicle fleet 

for completing the second stage of the survey. Respondents were then sent by mail a 

fuel purchase diary similar to the FCS one. All users of the selected vehicle were 

requested to report each fuel purchase dedicated to this vehicle during a whole month, 

as well as other relevant information at the moment of the purchase. Consequently, the 

NaPVUS does not only provide information on the selected vehicle, as does the FCS, 

but also on its drivers’ profile.
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3.2. Estimation of survey-based variables

We distinguish between a fuel purchase, that does not fill in the gas tank, and a 

fill-up, which does. It takes at least two fuel fill-ups reported in the diary during the survey 

month to obtain an estimate of the selected vehicle fuel consumption. From the date of 

the first fill-up to that of the second one, the fuel consumption can be calculated: it is 

equivalent to the amount of fuel purchased the second time.2 Of course, if more than two 

fill-ups occurred during the survey month, the amounts of fuel purchased each time since 

the first fill-up are cumulated. The fuel consumption for the period between the first fill-up 

to the last one is then extended to the whole month by assuming that it is representative 

of the monthly fuel consumption.

Similarly, two fuel purchases realized over the survey month are sufficient to infer 

the distance travelled by the selected vehicle from the corresponding odometer readings. 

The difference between the last odometer reading and the first one yields the exact 

distance travelled by the sampled vehicle during the period.3 The distance travelled 

during the survey month is then estimated on the basis of the assumption that the 

average distance travelled between the first and last odometer readings is representative 

of the average distance travelled during the month. The daily average distance travelled 

is thus multiplied by the total number of days comprised in the survey month.

In order to compute the fuel consumption rate of a selected vehicle involving at 

least two fill-ups during the survey month, we simply divide the estimate of the monthly

2 There is no way to figure out the exact fuel consumption from less than two fill-ups. If the 
tank was not full at first, the quantity of fuel necessary to fill it in exceeds fuel consumption. 
On the contrary, even if the tank was full initially, the amount of fuel purchased will be inferior 
to the quantity consumed.

3 For the FCS, additional odometer readings were requested at the exact moment the diary 
was received and returned. Therefore, distance estimates should be generally more precise 
in the FCS than in the NaPVUS because they are based on longer observation periods. In 
terms of adjusting the NaPVUS distance estimates, however, not much can be done about 
this.
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fuel consumption (expressed in litres) by the estimated total distance travelled during the 

month (expressed in hundreds of kilometres) as derived above. Note that even if only 

two fuel purchases are sufficient to estimate the distance travelled by the sampled 

vehicle during the survey month,4 two fuel fill-ups are necessary to estimate its fuel 

consumption and fuel efficiency.

3.3. Imputation of incomplete diaries

For the NaPVUS, which involves relatively small sample sizes, it became 

important to retrieve as many fuel purchase diaries as possible for estimation purposes. 

In order to do so, a fuel consumption has been imputed to sampled vehicles for which 

less than two fuel fill-ups, but at least two fuel purchases, were registered during the 

survey month. This section describes this preliminary stage of data processing which has 

been performed by StatCan, but to which the Automobile Mobility Data Compendium 

(AMDC) actively took part as an advisor for the NaPVUS.

Note first that when the news release described in Section 2.2.1 of Chapter 2 was 

issued, imputation for the first-quarter NaPVUS data had not been undertaken yet. 

Ignoring NaPVUS vehicles with less than two fill-ups but more than one fuel purchase 

was partly responsible for the huge discrepancies that were initially observed between 

the FCS and the NaPVUS estimates. As those vehicles, used relatively less intensively, 

were excluded from the NaPVUS estimates but not from the FCS ones, it biased the 

NaPVUS estimates of the average fuel consumption per vehicle upwards. The AMDC 

highlighted this fact and recommended the adoption of the imputation procedure for the 

NaPVUS.

4 Two fuel purchases are necessary to derive NaPVUS distance estimates. For the FCS, the 
distance can always be calculated for reasons outlined in the preceding footnote.
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A prediction model for fuel consumption (in logarithmic form) has been 

formulated. This has been estimated on the basis of observations for which fuel 

consumption could be estimated using the method described in the preceding section. 

The estimates were then used to predict, or impute, a fuel consumption to vehicles with 

less than two fill-ups, but more than one fuel purchase. The fuel consumption rates of 

such vehicles have then been determined based on the predicted fuel consumption and 

the distance estimate.

The percentage of incomplete diaries varies, for the FCS, from one quarter to the 

next. It reaches up to 40 percentage points in the second quarter of 1985. For the FCS, 

the prediction model for the imputation stage is a log-linear model involving the natural 

logarithms of the distance travelled and the vehicle weight as explanatory variables.5

The highest percentage of imputed vehicles for the NaPVUS was 18.6 and it 

occurred in the first quarter the survey was undertaken. Based on experiences 

performed on the FCS data, the NaPVUS model retained for imputation purposes also 

has the log-linear form, although it involves a larger range of explanatory variables. 

Dummy variables for the number of cylinders of the selected vehicle enters the model as 

a proxy for the vehicle weight which is not reported in the NaPVUS, while it was given in 

the registration files from which the FCS samples were drawn. The prediction model also 

involves the natural logarithm of distance travelled, the number of fuel purchases done 

during the survey month, the household size, and dummy variables for the vehicle type

5 Quarterly reports on the FCS (1979-1989) do not explicitly describe the imputation model, 
although they note that the fuel consumption was estimated on the basis of the distance and 
the vehicle weight whenever it could not be determined directly from at least two fill-ups. The 
annual report for October 1979 to 1980, however, presents some exploratory regression 
analyses that yielded to the imputation model. Since this model corresponds to the one 
suggested in the quarterly reports, we assume it is the one considered throughout the survey 
period.
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(car versus light truck/van), the transmission type, and the household region of residence 

(rural versus urban).

The AMDC’s task consisted in helping StatCan develop a prediction model. 

Throughout the imputation stage, the AMDC closely followed StatCan’s work, issuing, 

whenever necessary, a series of comments and suggestions regarding special data 

features, relevant explanatory variables to be tested in the prediction model, alternative 

functional forms to model fuel consumption, and diagnostic tests for the model 

specification. Bonin and Boucher’s report (1997) summarises the AMDC 

recommendations regarding the NaPVUS imputation.

The imputation procedure for the NaPVUS is currently being revisited by Sylvie 

Bonin, chief analyst at the AMDC (see Bonin, 1999). The consequences of having 

ignored some of the AMDC’s recommendations for respecting the time schedule and 

monetary constraints will be assessed. The merger of the NaPVUS to the Vehicle Fuel 

Economy and Emissions System (VFEES) and the Vehicle Fuel Economy Information 

System (VFEIS) microdata banks (see Boucher, 1999) will also allow us to consider a 

wider range of explanatory variables. In particular, the explanatory power of a categorical 

variable for the vehicle weight and its average lab-tested fuel efficiency will be tested. 

Furthermore, the consequences for compatibility of using different imputation 

specifications for successive stages of the NaPVUS will be analysed.

3.4. Major differences between the two surveys

Because of the specifics, to be outlined below, of certain questionnaire items and 

survey fields, it is risky to make a direct comparison between estimates derived on the 

basis of the data from the two surveys. Not having taken them into account in 

comparisons produced in NRCan’s news release was also responsible for the large 

discrepancies between the estimates produced from both survey data. In this section we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

39

will summarise the five major differences between the surveys. Differences that come 

into play in our discussions in the next two sections.

The main difference lies in the sampling unit itself. The base sampling unit for the 

FCS is the vehicle, drawn from provincial vehicle registration files, whereas the NaPVUS 

sampling unit is the household, selected from the LFS samples. Consequently, the 

NaPVUS questionnaire is much more detailed and collects information on household 

characteristics as well as data on vehicle use. Furthermore, the difference in sampling 

units leads to several discrepancies in survey fields that impact significantly on 

comparisons. These differences will be analyzed in detail in the next two subsections. 

For now, it is sufficient to say that administrative delays in updating vehicle registration 

files resulted in the exclusion of certain vehicle categories from the FCS sampling field.

A second distinction is the categorization of vehicle types. The FCS only 

distinguishes cars from light trucks and vans. In particular, it does not allow one to 

differentiate minivans from light trucks. On the contrary, the NaPVUS vehicle categories 

are much more detailed and distinguish among cars, minivans, light trucks, and vans.

A third difference is the way unused vehicles during the survey month were 

processed. They were saved in the NaPVUS microdata bank but not in that of the FCS. 

This introduces a selection bias into the FCS estimates. As a result, the number of 

private-use vehicles in Canada was underestimated for the FCS sampling period. And, 

consequently, the average per vehicle distance and fuel consumption estimates for the 

FCS were overestimated.

A fourth difference is that vehicles registered as commercial vehicles are not part 

of the FCS sampling field but are included in the NaPVUS as long as they were also 

used for private purposes.
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Finally, another difference lies in that vehicles on a long-term lease and vehicles 

provided by the employer of one of the household members were considered in the 

NaPVUS but not in the FCS, which only surveyed privately owned vehicles.

In the next two sections, we propose a way of accounting for these differences in 

order to generate compatible time series on the basis of data from the two surveys. 

Estimates for the variables of interest are derived from the microdata banks of the two 

surveys. The degree of aggregation of the survey data is set at the quarterly level for a 

reason that will be explained in detail below. In particular, quarterly estimates of the 

average number of vehicles, total distance travelled, and fuel consumption are required 

for the purposes of our study. The estimates will serve to generate complete time series 

for the number of vehicles, average distance, and the weighted fuel consumption rate (in 

litres per 100  kilometres) for each type of private-use vehicles — cars and light 

trucks/vans. All adjustments to survey-based estimates are described in more detail in 

Appendix A.

3.5. NaPVUS estimates

This section summarises the data processing leading to the NaPVUS estimates 

used in this study.

3.5.1. Raw NaPVUS estimates

There are two types of statistical weights in the NaPVUS microdata bank. This is 

a direct consequence of the underlying survey method. First, the households, which 

were randomly selected from the LFS samples, were contacted in a telephone interview. 

Those who agreed to participate in the second stage of the survey received a diary by 

mail for reporting all fuel purchases during the survey month for one of their vehicles, 

which was randomly selected from the household vehicle fleet established at the time of 

the telephone interview. The first statistical weight, to which we will refer as the
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background questionnaire weight (BQW), is determined on the basis of the telephone 

interview and is assigned to the household to reflect the degree to which it is 

representative of the Canadian population. The second statistical weight, related to the 

fuel purchase diary, or diary weight (DW), reflects the degree to which the selected 

vehicle is representative of the whole fleet of private-use vehicles in the Canadian 

provinces.

Sample sizes for both surveys are reported in Tables A.1 and A.2 of Appendix A. 

Note that the number of vehicles selected to fill out the FCS fuel purchase diary has 

been considerably reduced starting from 1986. Sample sizes have been cut to nearly 

one third of their previous levels. Based on sample sizes, estimates are thus likely to be 

less precise at the end of the survey period. Furthermore, as Section 3.6.3 will show, the 

fact that a narrower variety of private-use vehicles are represented in the sampling field 

for that period also contributes to a lack of precision.

In terms of selected vehicles, the average sample size for the FCS is more than 

twice as large as that for the NaPVUS. Despite this fact, the NaPVUS estimates may still 

be better than the FCS ones because they are based on a more extended and complete 

sampling field. Indeed, Section 3.6 will provide a list of vehicle categories that were 

excluded from the FCS samples, due to restrictions imposed by the sampling basis 

(registration files). Compared to the NaPVUS, the FCS over-sampled light trucks and 

vans (on average, around 40 percent of the NaPVUS vehicle sample is composed of 

light trucks and vans, while more than 65 percent of the FCS vehicles belong to the 

same vehicle class). This compensates for the fact that they represented a smaller 

proportion of the light vehicle fleet during the first survey period.

Since the NaPVUS respondents who filled in the fuel purchase diary is a sub­

sample of the households who participated to the first-stage telephone interview, the 

BQWs provide better estimates than the DWs. StatCan, which conducted the survey,
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has generated its estimates for the main variables of interest relating to private-use 

vehicles by applying the DWs. It was justified because most of these variables were 

derived from the diary. However, in order to depict a more accurate picture of the private- 

use vehicle fleet in Canadian provinces, we consider a new approach to estimation 

based on the BQWs.

Specifically, the private vehicle fleet size can be calculated in two ways: either by 

using information on all vehicles provided by the household at the time of the interview, 

or by using information from the fuel purchase diary for the vehicle selected to be part of 

the second stage of the survey. We adopted the first method. Estimates of average 

distance and average fuel consumption are based on diary information, because the 

telephone interview did not provide accurate data for this purpose. Assuming that the 

average distance and fuel consumption performed by households agreeing to participate 

in the second stage of the survey do not differ substantially from those of households 

who answered the telephone interview, total estimates for these two variables are 

obtained by multiplying average values by the number of vehicles determined by means 

of the interview.6

3.5.2. Adjustment for the non-response to certain questions

Because the telephone interview respondents in the first stage of the NaPVUS 

survey were required to provide information on all vehicles used by the household, some 

data may be missing. For instance, the vehicle type was not identified in the case of 

some vehicles selected for the purpose of filling out the fuel purchase diary. As a result, 

there is a problem when disaggregation by vehicle type is required. By way of illustration,

6 To confirm this hypothesis, an analysis of the NaPVUS non-responses and partial non­
responses is needed. Given the lack of detailed information on the characteristics of 
respondents and non-respondents to the first or second stages of the survey, this approach 
seems reasonable.
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we obtain a higher number if we estimate the number of vehicles on the basis of the 

NaPVUS sample than if we calculate the sum of estimates by vehicle type (cars and light 

trucks/vans treated separately). The difference between the two total estimates may be 

attributed to vehicles of unidentified type.

Since cars and light trucks and vans have very different characteristics, in terms 

both of use and of the degree to which they are representative of all vehicles, they are 

seldom grouped together in empirical studies. A comparative study by vehicle type 

based on the NaPVUS-derived estimates would underestimate not only the total number 

of vehicles but also all other overall quantities, such as total distance travelled and fuel 

consumed by all vehicles. Therefore, an adjustment is required for estimates by vehicle 

type so that they better reflect overall use of private vehicles in Canada.

Moreover, for time series modelling such as this, an adjustment of this kind will 

allow one to reduce seasonal variations due to non-response. Otherwise, if there were 

more missing values for one of the vehicle types during a given quarter, the size of the 

vehicle fleet, the total distance travelled and the total fuel consumption would be 

significantly underestimated for that quarter. The lower figures would be due not to 

seasonal factors but to the greater number of missing values for this quarter. The 

proposed adjustment, which happens on a seasonal frequency, will permit us to limit 

additional biases in the time series of interest, and the econometric model will thus be 

able to reproduce more accurately actual seasonal variations during the prediction 

period.

We therefore propose a distribution of vehicles of unidentified type as well as 

use-related variables across the raw estimates by vehicle type for the NaPVUS 

identified-type vehicles, based on the latter initial repartition. In order to remain 

consistent with the initial distribution of the identified-type vehicles, the difference 

between overall estimates for all vehicles and the sum of estimates by vehicle type is
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distributed between the two types proportionally to this distribution. Appendix A contains 

a detailed description of the adjustment method. The estimates required for calculating 

the proportions referred to in the next section, which deals with adjustments to the FCS 

estimates; will have gone through a similar adjustment.

3.5.3. Categorization of minivans

We should also draw attention to another feature of the surveys that must be 

factored into any comparison: the processing of minivan data. Minivans are closer to light 

trucks in shape but closer to cars in terms of use. Their categorisation is therefore a 

difficult issue.

Minivans have been assigned to the light truck class for the purposes of this 

study so that both vehicle types can be more easily compared with those in the FCS, 

which groups together minivans and light trucks. It should be noted however that this will 

introduce a bias into the NaPVUS estimates since the minivan class was associated with 

cars in the specification for the imputation model discussed in Section 3.3. The revision 

of the NaPVUS imputation stage should allow us to avoid such a problem since it will 

propose a prediction model in which the categorical variables for the vehicle type will 

differentiate minivans from car and light truck/van classes.

3.5.4. Vehicles used primarily for commercial purposes

As mentioned above, the NaPVUS data incorporate a large proportion of 

commercial-use vehicles because any commercial-use vehicle which is also used for 

private purposes is part of the survey. Note that there is no way of identifying vehicles 

with commercial registrations in the databank. However, it is possible to determine 

whether a selected vehicle was solely private-used by appealing to a variable derived 

from the survey background questionnaire. The percentage of time a vehicle was

exploited for commercial purpose, if any, during the month preceding the telephone
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interview is also part of the background questionnaire. Furthermore, answers to the first 

stage interview allow us to identify the owner of the selected vehicle: whether the vehicle 

was rented on a long term lease, or owned by the household itself, or by an employer of 

a household member.

There is no clear-cut way to distinguish between private and commercial vehicles 

unless these vehicles are solely dedicated to one use or another. Among vehicles used 

for both motives, the distinction is somewhat arbitrary. We will divide vehicles according 

to their primary use. It is natural to assume that vehicles registered as commercial 

vehicles are mainly used for commercial purposes. Since the FCS sampling field 

excludes such vehicles, primarily commercial-use vehicles should be more numerous in 

the NaPVUS samples than in the FCS ones.

Assuming that the percentage of time the selected vehicle was used for 

commercial purposes during the month preceding the NaPVUS first stage interview is 

representative of its general use, one can base the vehicles categorization according to 

their primary use on this variable. Figure A.1 of Appendix A illustrates a typical empirical 

distribution of this variable, based on the NaPVUS data for the fourth quarter of 1994, for 

the whole vehicles partly used for commercial purposes, as well as for cars and light 

trucks and vans separately. Although based on a relatively small number of observations 

(246 vehicles were partly used for commercial purposes during this quarter), the typical 

empirical distribution shows three distinct modes around 10, 50, and between 80 and 90 

percent of commercial use, respectively.

Given that the NaPVUS sampling field may involve a share of vehicles registered 

as commercial ones, a conservative criterion has been retained to differentiate vehicles 

according to their primary use. Specifically, it was agreed that a minimum of 75 percent 

of commercial use was a reasonable threshold for classification in the primarily 

commercial-use vehicle group. This criterion was initially established on the basis of
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estimates derived from the non-imputed NaPVUS data for the fourth quarter of 1994 but 

proved to be appropriate as well for subsequent quarters and after completion of the 

imputation stage.7

3.5.5. Not privately-owned vehicles

Initially, an adjustment was made to the FCS estimates for employer-owned 

vehicles, but they are now considered primarily commercial-use vehicles for obvious 

reasons. It is highly probable that they are registered as commercial vehicles, and they 

will therefore be processed in the same way as the NaPVUS vehicles with a commercial 

use rate of at least 75 percentage points. In other word, they are excluded from the 

empirical analysis.

Moreover, vehicles on a long-term lease are now considered private vehicles. 

One reason is that the long-term leasing is similar to the purchase of a new vehicle for 

private purposes: the use of a vehicle on a long-term lease resembles that of a privately 

owned vehicle.8 Furthermore, an adjustment to the FCS estimates on the basis of the 

proportion of leased vehicles in the NaPVUS, such as the one that was initially 

considered, overestimated the representation of leased vehicles in the first survey, 

because the popularity of long-term leasing has grown significantly in recent years. The 

number of leased vehicles as a percentage of the total private vehicle fleet should

7 See Appendix A and Boucher (1998a) for a justification of the choice of the partitioning 
criterion. Complementary analyses (see Boucher, 2000, and Boucher and Bonin, 2000) have 
shown that predictions do not change that much when primarily commercial-use vehicles are 
kept in the NaPVUS data sets. They follow very similar trends and seasonal variations, but 
their precision is adversely affected by the difficulty to identify relevant explanatory variables 
to capture the commercial share in the data.

8 In fact, since vehicles on a long-term lease are generally returned to the dealer after a couple 
of years, they represent a relatively younger vintage, and accordingly, might be used 
relatively more intensively than the overall privately-owned vehicle fleet (unless there is a 
kilometres limit in one of the contract clauses). However, the long-term leasing market, just 
as the market for new vehicles, attracts consumers who like to have their vehicle under 
warranty and use it relatively intensively. This kind of consumers existed in the 1980’s, as in 
the 1990’s. Therefore, we feel that excluding vehicles on a long-term lease from the NaPVUS 
data would further biase our results.
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therefore have been lower in the eighties than in the nineties. So by including vehicles on 

a long-term lease in the private vehicle class, we avoid having to make an adjustment 

that would inevitably build an upward bias into the FCS estimates.

3.6. FCS estimates

A number of adjustments are required to ensure that the FCS and NaPVUS 

estimates are comparable. Most of the adjustments are due to the FCS sampling unit, 

while some are related to the fact that the NaPVUS sampling field is more extended.

3.6.1. Adjustment for vehicles excluded from the sampling field

As mentioned above, the FCS sampling unit is the vehicle, drawn from provincial 

vehicle registration files. Since the files had not necessarily been updated at the time of 

the sampling for the survey, which was repeated on a monthly basis, it was impossible to 

include some vehicle categories for certain provinces in the sampling during given 

quarters. Table A.3 of Appendix A summarises the categories of vehicles that were 

excluded for each FCS quarter. Since these are specific vehicle categories, their 

exclusion would result in biased estimates derived from the survey data.

The first FCS adjustment is based directly on StatCan estimates, as reported in 

its quarterly FCS reports (1977-1988). The reports contain revised figures that cannot be 

reproduced from the microdata bank. We must therefore conclude that StatCan made 

adjustments for vehicle categories not included in the registration files of some provinces 

at the time of sampling. Comparative analysis of the StatCan quarterly results and 

estimates derived from the microdata bank enabled us to deduce the correction factors 

used by the agency to compensate for the incomplete information for each variable of 

interest. Specifically, correction factors, applied to the number of vehicles, the total 

distance and the total fuel consumption, were obtained separately for cars and for light 

trucks and vans. Average distance and weighted fuel consumption rates can be derived
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from these variables by calculating the ratio of total distance to number of vehicles, and 

the ratio of total fuel consumption to total distance, respectively.

The need for such an adjustment determined the level of data aggregation. Since 

the StatCan estimates are published only every quarter, adjusting to a more 

disaggregated level would have been complicated. The databank provides monthly 

estimates, but no specific rule is available for disaggregating the correction factor for 

missing vehicles at this level. Furthermore, StatCan’s method of adjustment was not 

explained in its reports, so any attempt to come up with a new method would inevitably 

have yielded different results from those of the agency.

Note that an adjustment to bring the sum of estimates by vehicle type in line with 

the overall estimates for all vehicles, as was done for the NaPVUS estimates, would be 

unnecessary in the case of the FCS. The FCS vehicles are drawn from registration files, 

so this type of information is available. The difference between the overall estimate and 

the sum of the estimates by category is always zero in the FCS throughout the sampling 

period.

The next three adjustments are based on the distribution of the NaPVUS data for 

each quarter. Assuming that this distribution also applies to the years in which the FCS 

was conducted, it is possible to make at least a partial correction to the FCS-derived 

estimates to account for the exclusion of certain vehicle categories from the sampling 

field. However, the corrections are approximated because the distribution of all vehicles 

and the use of private vehicles have changed over the last twenty years. As argued in 

Appendix A, such adjustments, although imperfect, are nevertheless preferred to no 

adjustment at all.
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3.6.2. Adjustment for unused vehicles

Vehicles that were not driven during the survey month were sampled in the FCS, 

but the information was not saved in the microdata bank. As a result, the total number of 

vehicles for each survey quarter is underestimated. Similarly, while estimates of distance 

and fuel consumption attributable to all vehicles are unaffected by the exclusion of 

unused vehicles, which yield nil values for the two variables, the average values of the 

variables are overestimated because they are based on a restricted number of vehicles.

The bias caused by the exclusion of vehicles that were not used during the 

survey month can be corrected only partially through a second adjustment. Based on the 

assumption that the percentage of non-driven vehicles during the FCS and the NaPVUS 

sampling periods was the same, estimates of the vehicle fleet generated from the FCS 

data can be corrected using the NaPVUS information. The percentage of leased or 

privately owned vehicles not driven during the NaPVUS survey can be extrapolated to 

the FCS data.

Thus, the FCS estimates can be increased by the above percentage of the total 

vehicle stock. However, since private vehicle use has steadily grown over the last twenty 

years,9 the number of vehicles not driven for a whole month is likely to be higher for the 

FCS than for the NaPVUS. Accordingly, the proposed adjustment is a minimal correction 

of the bias caused by the destruction of the FCS observations on unused vehicles. At the 

same time, estimates of total distance and fuel consumption do not require such an 

adjustment because they are in no way affected by the exclusion of unused vehicles, 

which register nil values for these variables.

A related AMDC report (see Boucher, 1998b) has shown that while the number of vehicles 
has grown over the last twenty years, private vehicles have also been used more intensively 
since the early nineties.
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In the past, unused NaPVUS vehicles were identified as vehicles showing zero 

distance travelled during the survey month. However, it appears that vehicles to which 

no fuel consumption could be attributed because they displayed less than two fuel 

purchases and two fill-ups were assigned zero distance too in the NaPVUS data bank.10 

Thus, using the zero distance criterion to estimate the number of non-driven vehicles in 

the NaPVUS would produce an overestimate.

In addition, since the distance travelled by the selected vehicle is a diary-based 

variable, it encompasses many missing values owing to the partial non-response bias. 

Specifically, the variable is missing for all households that participated in the telephone 

interview but refused or failed to fill out the diary. Thus the new adjustment, designed to 

distribute the missing values among nil values and values above zero, would inflate the 

unused vehicle estimates even more.

For both these reasons, we established a new criterion for calculating the number 

of non-driven vehicles during a given month. It relies on a telephone interview-based 

variable — the dummy variable indicating whether the selected vehicle was used during 

the thirty days preceding the interview — and involves fewer missing values. The 

distribution of missing values between vehicles driven and vehicles not driven during a 

month will thus generate a more reliable and lower estimate of the proportion of non- 

driven vehicles.

Furthermore, this criterion is less vulnerable to non-response bias problems. For 

instance, a respondent could state that he did not use the selected vehicle during the 

survey month so as to avoid having to fill out the fuel purchase diary. On the other hand,

10 This also implies that average distance and average fuel consumption are overestimated, 
because these vehicles registering lower-than-average values for the two variables are not 
represented. Nonetheless, this does not cause further disparity between estimates for the 
two surveys, because the FCS vehicles presenting similar characteristics were processed in 
the same way.
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a respondent does not have a strong motive for giving a negative answer to the question 

concerning the use of the selected vehicle during the month preceding the telephone 

interview. At most, his incentive would be to avoid having to answer a few additional 

questions. The adjustment for exclusion of unused FCS vehicles is therefore based on 

this new criterion.

Applying the criterion, estimates of the percentage of leased or privately owned 

vehicles not driven during the month prior to the NaPVUS telephone interview have been 

derived for each quarter. All correction factors based on quarterly proportions derived 

from the NaPVUS data were calculated in the same way. The NaPVUS estimates for the 

same quarter were matched in pairs to generate quarterly correction factors based on 

the largest possible number of observations and thereby increase their level of 

significance. Given that the NaPVUS sampling period as a whole covers two full years, 

each adjustment factor is based on data from the two corresponding quarters.11

3.6.3. Adjustment for new vehicles

A close examination of the FCS reports revealed that certain classes of new 

vehicles were not included in any provincial registration files for some quarters. By new 

vehicles, we mean those manufactured during the survey year and those whose model 

year was the following year but which were put on the market during the current year. All 

these vehicles were excluded from the FCS sampling field during the 1984-89 period. 

For 1979-83, on the other hand, vehicles whose model year was the current year were 

sampled starting in the fourth quarter of that year.

11 For example, the adjustment factor applicable to the first quarter data is calculated on the 
basis of the NaPVUS observations in the first quarter of 1995 and the first quarter of 1996, 
and the adjustment factor applicable to the fourth quarter data is calculated on the basis of 
observations in the last quarter of 1994 and the last quarter of 1995. The adjustment factors 
proposed below to compensate for the exclusion of other vehicle categories from the FCS 
sampling field are calculated in a similar fashion.
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Thus vehicles whose model year was the following year but which were put on 

the market toward the end of the current year were always systematically excluded from 

provincial registration files. However, assuming that these vehicles came on the market 

only in the fourth quarter of any given year,12 only an adjustment to the FCS fourth- 

quarter estimates is required. The adjustment is combined with a correction to 

compensate for a lack of current-year vehicles if they too were excluded from the 

registration files. In short, three kinds of adjustments are required to compensate for the 

exclusion of new vehicles from the FCS:

a) For the first three quarters of each year, the correction is based on the proportion 

of vehicles of the current model year in primarily private-use NaPVUS vehicles;

b) For the fourth quarters during the 1979-83 period, the adjustment is based solely 

on the proportion of vehicles of the following model year put on the market during 

the fourth quarters of the NaPVUS. Note that this percentage is very small and 

cannot be considered significant because its numerator is based on a very small 

number of observations;13

c) For the fourth quarters of the1984-89 period, the adjustment is based on the 

cumulative proportion of current- and next-model year vehicles in NaPVUS 

estimates.

12 One can assume that this applies to most vehicles of the following model year. Indeed, in all 
NaPVUS samples, no vehicles of the following model year appear until the fourth quarter of 
any given year. In addition, since new vehicles are coming out earlier and earlier each year, 
they are even less likely to come out before the fourth quarter of an FCS survey year than 
during the NaPVUS sampling period.

13 Fewer than thirty observations for the two fourth quarters of NaPVUS as a whole. Yet 
StatCan recommends that estimates based on such a small number of observations not be 
published. That being said, NRCan wanted this adjustment, however small the proportion 
was. Our view is that application of this adjustment would in any case have only a marginal 
impact on the final estimates.
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3.6.4. Attempts to retrieve primarily commercial-use vehicles

Since vehicles with a commercial registration are excluded from the FCS, the 

survey involves a smaller share of primarily commercial-use vehicles than the NaPVUS. 

Nonetheless, several attempts to isolate such vehicles from the FCS databank have 

been undertaken. Since the FCS only provides information on the vehicle characteristics, 

but not on its user, there is no way to infer which use the selected vehicle was primarily 

dedicated to. As for the two preceding adjustment procedures, the natural way to 

proceed is to rely on relevant information from the NaPVUS. But since the NaPVUS does 

not provide information about the selected vehicle registration class, the adjustment 

cannot be based on the proportion of primarily commercial-use vehicles apart from those 

with commercial registrations.

The general idea underlying all of the partitioning trials was to extrapolate the 

NaPVUS percentage of commercial-use vehicles to the FCS period. Different 

formulations of discrete choice models have been explored to model either the incidence 

of using a vehicle primarily for commercial purposes, or the proportion of commercial use 

itself.14 The models were estimated using the NaPVUS sample, and then used to predict 

the dependent variable based on the FCS information. Given the limits of the information 

provided by the FCS, the set of admissible explanatory variables for such models had to 

be restricted to the vehicle characteristics. Some household characteristics proved to 

have an important explanatory power in the prediction model, and so the different trials 

were meant to fail.

Therefore, we were unable to retrieve the remaining primarily commercial share 

of vehicles from the FCS data. Since it already excludes vehicles with commercial

14 See Boucher (1998c) for more details on the different inference trials.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

54

registrations and involves only privately owned vehicles, the FCS sampling field however 

excludes an important share of vehicles primary used for commercial purpose. We shall 

thus assume that the remaining share is negligible, so that vehicles with commercial 

registration are supposed to correspond to employer-owned vehicles and those with at 

least a 75 percent commercial use rate. By excluding the latter from the NaPVUS, we 

thus obtain comparable samples.

Note that while the previous adjustments consisted of adding quantities to the 

estimates derived from the survey with the narrowest sampling field in order to make 

them comparable to the other ones, the latest adjustment operates in the exact opposite 

direction. The rationale for removing primary commercial-use vehicles from the NaPVUS 

is that resulting estimates will be easily interpreted as applying to (primarily) private-use 

vehicles. Misleading conclusions could be drawn otherwise, because the characteristics 

of a vehicle and its users can vary considerably depending on its primary use.

For example, the number of primarily commercial-use vehicles can be inferred 

from the difference between the total number of registrations and the estimated number 

of primarily private-use vehicles so obtained. If commercial-use vehicles were part of the 

survey-based estimates on the basis that any private use (however limited) is made out 

of them, the commercial-use portion of the total number of vehicles would appear lower 

than it should be because some primarily commercial-use vehicles would have been 

wrongly assigned to the private vehicle type.
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This chapter proposes a method for dealing with the problem of incomplete 

information in the three time series of national interest: the private vehicle stock, the 

average distance they travel and their weighted fuel consumption rates. A simultaneous 

equations model that encompasses these variables is formulated. Sampling-based 

techniques incorporating a data augmentation stage are applied to fill the gap between 

the two surveys to provide us with aggregate data on these variables. Provided that the 

main purpose of this study lies in the prediction of these time series, only the estimation 

of an unrestricted reduced form of the model is required.

The estimation of the simultaneous equations model is first undertaken equation 

by equation to identify relevant predictors and to reveal the underlying dynamics. We 

then turn to the estimation of the system of equations as a whole in order to account for 

the interrelationships between the three transport aggregates. The next chapter will 

present the estimation and prediction results obtained by applying the Bayesian 

estimation methods developed in this chapter.

4.1. Econometric model

The fuel consumption identity (1) introduced in Section 2.1 of Chapter 2 underlies 

our prediction model. This identity factorizes total fuel consumption, C, as the product of 

three components:

where S stands for the vehicles stock and D is the total distance they travel. Hence,

D =D/S represents the average distance travelled by each vehicle, and E=C/D is their 

fuel efficiency, or weighted fuel consumption rates. Note that these components 

correspond exactly to the variables of interest to be modelled.

d )

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

57

For reasons given in Chapter 2, Schimek’s (1996) model was selected to study 

the three energy components. Geared to longitudinal studies of private-vehicle use 

aggregated time series, the model embeds the three variables of interest in a 

simultaneous equations framework. In its most general form, the structural model can be 

written as follows:

where the t subscript refers to the current time period, f( ), g( ) and h( ) represent 

functions whose first two arguments correspond to the two other energy components 

while the third ones, the xit’s, stand for row vectors of exogenous explanatory variables of 

dimension 1xkj, and the eit’s are error terms relating to the i,h equation in the system, for 

i=1,2,3 and t=1,...,T.

Since the estimation of a general non-linear simultaneous equations model can 

be complicated, Schimek assumes a linear form for the functions f( ), g( ) and h( ) 

appearing in equation (2). We make the same assumption, because of the additional 

difficulty raised by the fact that the three time series to be modelled involve missing data. 

Under the linear assumption, the unrestricted reduced form of the structural model (2) 

becomes:

where yt ’=[S t Dt Et] and et = [e1t e2t e3t] are vectors of dimension 1xn, n=3 being 

the number of equations in the system, rt is a row vector of dimension r containing the 

distinct elements in {x1t,Xa,X3,}, and n  is the associated parameter matrix of dimension 

rxn.

The main purpose of the present analysis lies in the estimation of the unrestricted 

reduced form (3), which is sufficient to obtain predictors for the three dependent

S, = f(p t ,Et ,x it)+£ it 
Dt = g(St,Et,x2t)+ £2t
Et = h(st,Dt,x3t)+£3t

(2)

y t ’= rtn  + et (3)
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variables. Once predictions have been obtained for the three variables forming the 

system of equations (3), fuel consumption can be derived from equation (1) by simply 

multiplying these three quantities. Likewise, the total distance travelled by all private-use 

vehicles can be obtained by multiplying the vehicle stock by the average distance 

travelled by each vehicle.

If the error terms e1t, e2t, and e3t, in the system of equations (3) were independent 

of one another,1 estimating the unrestricted reduced form would reduce in estimating 

each equation separately. Consequently, if the dependent variables formed complete 

time series for the period of interest, parameter estimates could be calculated by means 

of independent ordinary least squares regressions. However, such is not the case, so we 

must use the methods described in the following sections to obtain the desired 

predictions.

4.2. Single equation model estimation

The basic extrapolation methodology aiming at bridging the gap between the two 

survey estimates relies on a Bayesian approach using Gibbs sampling with data 

augmentation. The Gibbs sampler, introduced in Section 2.5.2 of Chapter 2, enables the 

Bayesian estimation to rely on the full set of conditional posterior distributions of the 

parameters, instead of their joint posterior distribution. By considering missing values of 

the dependent variables as further parameters for estimation, the data augmentation 

procedure allows us to obtain predictions for the intervening period between the two 

surveys.

For simplicity, first assume that the three error terms in equation (3) are not 

correlated. This rather unrealistic assumption will be relaxed in the following section. The

1 The only impact of the assumed independence of error terms is on the efficiency of the 
estimates and predictions. Specifically, if the assumption were to be violated, the resulting 
estimates and predictions would be less efficient, but still consistent.
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simpler estimation framework considered here provides benchmarks to which results 

derived from more convenient, but more complex, estimation methods can be compared 

and contrasted. Under the assumption of contemporaneous independence, a simple 

linear regression (LIN) model can be formulated for each equation separately:

y = X |3 + u  (4)

where p is a parameter vector of dimension kx1, X is the corresponding explanatory 

variable matrix of dimension Txk, u is a Tx1 vector of error terms, and the dependent 

variable comprises three components: y=(yF’,yM’,yN’)\ The (Tr 1)x1 vector yF, and the (T- 

T2)x1 vector yN correspond, respectively, to observations on the dependent variable from 

the FCS and the NaPVUS, where [T^Td is the interval between the two surveys. The 

(T2-T i+1)x1 vector yM represents observations for which predictions are required for the 

intervening period. The resulting augmented sample of T observations including 

predictions is said to be complete, as opposed to the sample of observable data.

4.2.1. Simple linear regressions

Suppose, to begin with, that the error terms in model (4) are independently and 

normally distributed with zero mean and variance o2: u~N(0 , a2̂ ), where IT stands for 

the identity matrix of rank T. The (T2-T1+k+2)x1 parameter vector for which estimations 

are required is composed of elements of p, a2 and yM: 0=(P’,a2,yM’)’. In the present 

framework, natural conjugate priors is a standard choice. Specifically, a combination of a 

Normal distribution for the parameter vector p and an inverted Gamma distribution for the 

variance parameter o2 is selected. Conditional on values of p and a2, the posterior 

distribution of yM is fully determined by model (4).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

60

If the prior on p is p(P)=N(b,A"1), then its conditional posterior distribution,2 which 

is also normal, is given by:

p{p I G2,X,y)=N(j3,A_1) (5)

where A= X’ X+A and P=A_1 (X’y+Ab). Moreover, if 1/a2 is Gamma distributed, that is 

p(1/o2)=G(c/2,d/2),3 then its conditional posterior distribution has the following form:

p ( l /a * IM ,y ) = G p ! ± ^ )  (6)

where u’u = (y -  Xp)’(y -  Xp) denotes the sum of squared residuals in model (4).

Combined with the Gibbs sampler, the data augmentation procedure generates 

values for the latent variables as well as values for the other model parameters from their 

complete set of conditional posterior distributions given the model specification, the 

priors, and the current values of the other parameters. Precisely, starting from arbitrary 

values p° and (a2)0 for the model parameters p and a2, respectively, the Gibbs sampler 

generates at the ith iteration:

i) (data augmentation stage) values for the latent variables from: 

yU=XMtPi_1+uiw Where u^ 1 ~NID(o,(a2) M ) (7) 

and p1'1 and (a2)1'1 correspond, respectively, to the values of p and o2 computed 

during the preceding iteration;

ii) given y1 = lyF’.yM ’.yN’) .  an updated value, p1, of p from its conditional posterior 

distribution:

p‘ ~p(pi(a2 )|-1,X,yi)= N ^ i,A -1) (8 )

where A = (X’X + A) and p'=A~1(x’y'+Ab);

2 See Zellner (1971) for a derivation of the conditional posterior distributions.
3 Note that the notation of parameters of the Gamma distribution may differ in the literature.

The one we make use of here is such that if Z~G(c,d), then the random variable Z has mean
E[Z]=c/d and variance V(Z)=c/d2.
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iii) given p' and y\ an updated value (a2)1 of cr2 from the conditional posterior 

distribution of 1/a2:

Postulated prior parameter values are: b=1, A=Ik, c=0.5 and d=2. OLS estimates

based on the reduced sample without missing information (obtained by simply stacking 

the observations from both surveys) provide good starting values for the model

values generated after the burn-in period has elapsed. The predictions for the missing 

data, yM, are calculated in a similar fashion as the averages of the yM values generated

model simply represent a linear transformation of the p parameter vector, namely 

r(0)=r(P)=Xp, they could also be easily obtained from:

4.2.2. Adding lagged dependent variables as regressors

Predictions resulting from the application of the Gibbs sampling method with data 

augmentation to the simple linear regression model provide a yardstick for those 

generated by more general models and estimation methods. Since we are dealing with 

quarterly time series, it is crucial to allow for the dynamic dependencies explicitly in the 

model. The first attempt in that direction consists in including lagged dependent variables 

as a regressors within the simple linear regression model (4) in order to account for 

serial correlation in the time series.

The value of a seasonal variable in a given quarter is generally correlated with its 

value four periods ahead. The vehicle stock is one exception to that rule. The current 

vehicle stock is equal to the number of vehicles that were in operation in the preceding

where u^y-Xp* (9)

parameters. The Bayesian estimates, (3 and 6 2 , are obtained from the means of the

in each iteration following the burn-in period. Since the predictions of a linear regression

y=E[r(p)l X]=XE[p I X]= Xp (10)
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quarter plus the new vehicle sales minus the number of vehicles that were send to scrap 

in the interval. Accordingly, the vehicle stock in the preceding quarter is a more important 

determinant of the current number of vehicles than the stock prevailing during the same 

quarter last year. Had we considered the new vehicles sales instead, the number of 

vehicles purchased at the same season last year would have been more relevant to the 

explanation of the actual sales.

In order to account for serial correlation in the series for which predictions are 

required, we included lags of the dependent variable as additional regressors within the 

simple linear regression model (4). Models involving p lagged dependent variables 

(GLAG(p)) may be represented in the following way:

y t =a(L)yt + x tp+ut = X a sy t_s + x t|3+ut where ut ~ NId(o,0 2) (11)
S=1

and a(L) = Xs=ia sLs is a p-order polynomial in the lag operator L which, whenever

applied to the current period variable, yt, results in: Lsyt = yt_s. We also consider a 

restricted version of this model (PLAG(4)) that incorporates a single 4-period lagged 

dependent variable.

The use of lagged dependent variables in the presence of incomplete information 

raises a new challenge from a methodological viewpoint. Now, missing values do not 

only appear in the dependent variable vector, but also in the matrix of explanatory 

variables. We propose a generalization of the MCMC method introduced in the 

preceding section which solves this additional difficulty. In order to do so, we make the 

most of the iterative nature, the convergence and non-simultaneity properties of the 

Gibbs sampling algorithm. Since the data augmentation stage can be operated one 

quarter at the time, the value of yM for the t,h observation generated at the im iteration of

the process, y^t , may be used as a regressor s periods ahead. Based on this principle,
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we may form the extended row vector of explanatory variables:

Zmi+s = [yU  yU+1 yU+s-1 xt+s] to be used in the calculation of y'm+s.

The value of the explanatory variable yt.s is known for the first p observations 

immediately following the end of the first survey period, although that of the current 

dependent variable yMt must be computed. Once the values of y t̂ are determined, they 

serve as the independent variables in the regressions used to compute the values of 

yMt+s for the next s=1,...,p observations, and so on. Note that this procedure satisfies the 

general idea behind the Gibbs sampling method. First, it uses the conditional posterior 

distribution of the dependent variable to complete the series. Second, it incorporates, in 

each step, all the available and most up-to-date information regarding the parameter 

vector for which estimates are required, including the missing values of the dependent 

variable. We do condition on the first p observations of the sample, that is these 

observations solely contribute to initialize the lagged dependent variables used as 

regressors p periods ahead. The initial observations do not enter the estimation process 

otherwise.

The Gibbs sampling algorithm used to estimate model (11) starts from arbitrary 

values a0, (3° and (o0)2, for the model parameters a=(oti,..., ctp)’, p and o2, respectively, 

and generates at the ith iteration:

i) values for the error terms as U{~1 ~ NID(0,(cr2)1-1) with the help of which we can

compute values for the missing dependent variables from:

y'm =  x < 1yt*-s +xtPM +ui~1 (12)
S=1

where ' ° r t  = T l T’ +<P" 1)IvU-s for t = T, + p T2

while aM,p''1 and (a2)1'1 correspond, respectively, to the values of the parameters

a, p et a2 computed during the preceding iteration. Note that the last p variables
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generated in this way will serve as explanatory variables for observations

T2+1 t 2+p ;

ii) given the completed dependent variable vector, y', the completed explanatory 

variable matrix, Z\ and (a2)1'1, updated values 6 '= (a ,’,p1’)’ for the parameter 

vector 6 =(a’,P’)’ from its conditional posterior distribution:

marginal prior on 5 is: p(5)=N(b,A'1);

iii) given updated values 8‘, Z' and y1, an updated value, (or2)1, of cr2 from the 

conditional posterior distribution of 1/or2:

Initial values of the parameters can be set to the Bayesian estimates obtained for

above section are also postulated for the prior parameters.

4.2.3. Autocorrelation treatment

Model (4) does not only involve time series in the form of the dependent variable 

for which predictions are required, but also in the explanatory variable matrix. The 

hypothesis of independent error terms is therefore likely to be violated. In a second 

attempt to control for possible inter-temporal dependencies in the time series, we allow 

for the model error terms to be correlated in time. Since we are dealing with quarterly 

data, we consider a fourth-order autocorrelation structure (AR(4)) of the form:

<j>(L)et = et —<>1et_1 — <S>2et_2 —«t>3et _ 3  —<f>4et _ 4  = ut where ut -  NID(0,o2) (15)

and <|>(L) = 1 — <(>1L — <t>2L2 -  ̂ L 3 -  <j)4L4 is a polynomial in the lag operator L

where A '= (z ' ’Z '+ a ), 5' = (al\ p l’)’= ^ l)~1^ l,y‘ +Ab), and it is assumed that the

\

(14)

J

where ^  = y \ -z^S' = y l - S ^ a ^ y U  - x tp' fort=1,...,T.

the simple linear model of the preceding section with oc°=0. The same values as in the
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As mentioned in Section 2.5.3 of Chapter 2, we follow Chib and Greenberg’s 

(1994) treatment of autocorrelation, but generalize the method to include a data 

augmentation stage, in order to obtain predicted values of the dependent variable for the 

transient period, between the two surveys. The authors address the more general issue 

of estimating the posterior distributions of the parameters for a model with an 

autoregressive moving average structure for the error terms (ARMA(p,q)). However, they 

also suggest a simplified algorithm for dealing with models involving no moving average 

component, which is convenient for our needs. Building on the previous paper by Chib 

(1993), only concerned with autoregressive models, the proposed MCMC technique 

does not impose conditioning on the first p=4 observations, but rather assumes that they 

are drawn from the stationary distribution:

where X1 contains the first p rows of X, the I  matrix satisfies X = £2X£2’+i(p)i(p)’ where 

i(p) = (1,0 ,...,0 )’ is the px1 unit vector, and Cl is a matrix defined as follows:

Partition the model components as follows: y=(Y1’,Y2’)’, X = [X1 X2] and

u=(u1’,u2’)’, where Y, and u1 are px1 vectors corresponding to the first p observations, Y2 

and u2 are (T-p)x1 vectors involving the remaining observations, while X, and X2 are the 

corresponding explanatory variable matrices of dimensions pxk and (T-p)xk, 

respectively. For simplicity, we assume that Xt and X2 do not involve any lagged 

dependent variables, as in Chib and Greenberg. Then, consider the transformed 

variables:

(16)

«  = J ~P QP with <|>_p = (c h ,.. .,V i)’•

% = C r1Yj, X i= Q - 1Xi, u1t = y1t - x 1tp fort = 1,...p 
y2t =4»(L)yt , x2t = <ML)xt, u21= y 2t - x 2tp for t = p + 1,...,T

(17)
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where Q stands for the Cholesky matrix of I ,  defined such that £=QQ\ In stacked form, 

let y = (Y-|\ Y2T  and X = [X1 X2] . Then, the transformed model may be written as:

The following priors are postulated. (3 and o2 are assumed to follow the usual 

Normal-inverted-Gamma priors: p(P)=N(b,A'1) and p(1/oz)=G(c/2,d/2), while 4> follows a

truncated normal distribution: p(<j>) = N(tp,d>_1 )S^, restricted to the region, S*, of

stationary values of <j>, that is S4, contains parameter vectors (j> insuring that all roots of the 

<)>(L) polynomial lie outside of the unit circle. Lets further define the (T-p)x1 vector of

autocorrelated error terms e = (ep+1 eT)’ and the corresponding (T-p)xp matrix, E, of

lagged errors whose tth row is given by [ew  ... et_p]. Under the preceding hypotheses

and assuming, for the moment, that the y vector is complete, the conditional posterior 

distributions of the model parameters are:

Distributions (19) and (20) are standard, but that is not the case for distribution

(21) which deserves more attention. In order to simulate random variates from the 

conditional posterior distribution of <j>, we will appeal to another MCMC technique from

y = Xp + u where (18)

p(pl cr2 ,<|>,y,X) = N(P,A~1) (19)

(20)

(21)

where A = cT2 X’X + A, p = A "1(o~2X’y + Ab),

and
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Chapter 2: the Metropolis-Hastings (M-H) algorithm. This powerful tool allows one to 

generate random variates, z, from a multidimensional density function, p(z)=cr(z), where 

c, the normalizing constant, might be unknown, by drawing random variates from another 

density function, called the candidate-generating density, suitably chosen for 

convenience and ease of implementation. Given the current random variates, z', the M-H 

algorithm draws a candidate, z*, from the candidate-generating density q(z',z*). The 

process then sets the next value of z to zl+1=z* provided a certain condition is satisfied; 

otherwise, it returns z'+1=z'.

The optimal condition would be that the candidate-generating density satisfies the 

reversibility condition defined as:

P (x )q (x ,y ) =  p (y )q (y ,x )

for all admissible values of x and y, in which case p() would be an invariant density.4 If 

the candidate-generating density respected the reversibility condition, then the algorithm 

would generate convergent values from p() at each iteration. However, in general, this is 

not the case and for some values of x and y, we have:

P(x)q(x,y) > p(y)q(y,x) 

which means that the process moves from x t oy  too often and from y tox too rarely.

In order to correct the situation, the candidate is subjected to a further 

randomization by introducing a probability, m(x,y) <1, that the move is made. The 

probability of move is chosen in such a way that the transition probability, q(x,y)m(x,y), 

meets the reversibility condition when m(x,y) = 1. In this case,

P (x )q (x ,y )m (x ,y )  = p(y)q(y,x)m(y,x) = p(y)q(y,x).

4 For more details on these conditions and their relationship to the M-H algorithm, see Tierney 
(1993) or Chib and Greenberg (1995).
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Therefore, by definition,

p(y)q(y.x)
P(x)q(x,y)

(22)

In other words, the candidate, z*, is accepted with probability

m

Under mild regularity conditions, the draws from the M-H algorithm converge 

almost surely to the invariant distribution p(z) after the burn-in period.5 Note that 

knowledge about the normalizing constant, c, is not necessary because it appears in 

both the numerator and the denominator of the probability of move, as defined in (22). 

Furthermore, provided that the candidate generating density is symmetrical, q(y,x)=q(x,y) 

for all values of x and y, the probability of move reduces to m(x,y) = min-{p(y)/p(x),l}. 

Similarly, whenever p(z) may be written as p(z) S(z)h(z), where h(z) is a density that 

can be sampled from, and S(z) is uniformly bounded, and when the candidate- 

generating density is chosen to be q(x,y)=h(y), the probability of move reduces to 

m(x,y) = m inf2(y)/E(x),l}.

As noted in Section 2.5.2 of Chapter 2, a M-H step might be combined with the 

Gibbs sampling process to generate some of the conditional posterior densities. This is 

exactly what is required here to generate random variates from the non-standard 

conditional posterior distribution of <|>. A natural and efficient choice for the candidate-

generating density6 is inspired by the form of (21), namely n (<(> 10,0 -1 )b  ̂. Since ¥(<()) is

proportional to a normal distribution, it can be uniformly bounded and so, as discussed in

5 See Smith and Roberts (1993) for a more detailed discussion of the convergence issues.
6 Refer to Chib and Greenberg (1994,1995) for a justification.
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the preceding paragraph, the probability of move reduces to

m(f,«i> *)= min{F(<|) )l}.

In summary, the Gibbs sampling algorithm, augmented with a M-H step proposed 

by Chib and Greenberg (1995) to estimate a model with autocorrelation, and further 

generalized to incorporate a data augmentation step, proceeds as follows. Starting from

arbitrary values (3°, §° and (a0)2, for the model parameters p, <|> and a2, respectively, at 

the ith iteration the algorithm:

i) computes values for the last four autocorrelated error terms immediately 

preceding the end of the FCS sampling period as follows:

e["1 = yt - X tpM fort = T1-4 ,...,T 1-1 ,

generates values for the independent error terms within the intermediary period 

between the two surveys from:

U(~1 ~NID(0,(ct2)m ) for t =  T2,

and, from these, computes values for the autocorrelated error terms within the 

same intermediary period as:

-J —1   i—1 _ i—1 i  _j_ i j  J —1 t  — *T  Te{ — <))■) ew  +<t>2 ©t~2+ T3 ®t-3 + t 4 et-4 +ut tor t -  t 1, . . . , t2 .

Using these values, compute values for the missing dependent variables as:

yU = Xtpw + ejf1 fort = T1 T2 , (23)

where pM, (J)1'1 and (a2)''1 correspond, respectively, to the values of the parameters 

a, p and o2 computed during the preceding iteration;

ii) given the completed dependent variable vector, y1, computes transformed 

variables, y1 and X1, in expression (17) using <f>=<j>,_1, and generates updated 

values for the P parameter vector, p1, from its conditional posterior distribution:

P1 (24)

where A* = (o~2 )~1 Xs’ X‘+ A and p1' = )~1 ĵ (o"2 )_1 X1’ f i + Ab ;
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iii) given updated values p' and y1, generates an updated value, (a2)', of a2 from the 

conditional posterior distribution of 1/a2:

c + T d + x[=1(u if- l . - p f l / a ^ M - V ^ G
(a2) 2

(25)

where u[ = y[ -X fp ' for t=1,...,T;

iv) given updated values p1, (a2)1 and y1, generates an updated value, <{>', of <|) from the 

following M-H step:

- first generates a value <|>* from the candidate-generating density:

(26)

where !>' = (o-2] e ,’Ei + 3>, 9 ' = (®')"Y(a_2)E '’El -f-<E»cpl and e' and E' are
)

defined as in (30) using ê  = y[ - X tp' for t=p+1,...,T;

- then draws a pseudo-random number, w, from the uniform distribution on the 

[0,1] interval;

- computes m(<j>1-1,<(>*)= min{F(<|> )l]  where ¥(<!>) is defined as:

•P((|>) = |2|-’/2 exp (y, -  X, p1 )2_1 (Y1 -  X1&')
{ & )

- if w Sin(fh ,, f ' ) ,  sets V = ̂  *; otherwise sets V = .

The following values are assumed for the prior on the autocorrelation parameters: 

9=0.1 for i=1,...,p and 0 = IP. The other parameters of the model keep the same prior 

parameter distribution values as above. OLS regressions performed on the stacked 

survey-based data provide starting values for the p and a2 parameters. In order to be 

perfectly consistent with OLS estimates, null starting values should be assigned to all 

autocorrelation parameters. But since the algorithm runs into difficulties whenever such 

limiting values are used as initial values, we rather start from 9=0.1 for i=1,...,p. Note 

that these values satisfy the stationarity conditions.
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4.3. Simultaneous equations model estimation

Consider the more general problem consisting in the estimation of the system of 

equations (3) as a whole. In the following sections, we first estimate a static model and 

then relax some of the underlying assumptions to introduce some dynamics. The next 

section explains how we may estimate a seemingly unrelated regression (SUR) model 

using the Gibbs sampler. The following ones address the more general issue of 

Bayesian estimation of vector autoregressive (VAR) models.

4.3.1. Seemingly unrelated regressions

The unrestricted reduced form of the system (3) may be rewritten in the form of a 

seemingly unrelated regression (SUR) model, where each equation involves the same 

explanatory variable matrix. However, for reasons that will become apparent when we 

analyse the results of Monte Carlo experiments, we do not impose that each equation 

involves exactly the same set of regressors and we write the seemingly unrelated 

regression model as follows:

yt = X te + £t (27)

where yt = (S t,Dt,Et)’ and et =(£it,E2t>e3t)’ are vectors of dimension nx1, 0 is a kx1

vector of parameters, and the corresponding explanatory variable matrix X, of dimension 

nxk is defined as:

X 1t 0 0

x t = 0 x 2t 0 (28)
0 0 X3t_

with k=k1+k2+k3. Note that the notation may be modified in an obvious way to allow for 

parameter equality restrictions across equations, although we do not impose such 

restrictions here.
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For the moment, let’s assume that the Xt matrices in (27) do not involve any 

lagged dependent variables. Furthermore, consider the hypothesis that the error terms 

are distributed according to: et ~ NID(0,£), where E is an nxn positive definite matrix, for

t=1,...,T. In other words, error terms are uncorrelated from one period to another, but 

they can be contemporaneously correlated. Let Q be the Cholesky matrix of Z'1 defined 

in such a way that QQ’=£'\ and consider the transformed model:

where the transformed variables are defined in the following way: yt = Qyt , 5(t = QXt 

and ut =Qet ~NID(0,In).

Under the usual natural conjugate prior that p(0)=N(b,A'1) and p(£‘1)=W(v,A), where W 

denotes the Wishart distribution,7 Zellner (1971) shows that the conditional posterior 

distributions for 6 and I ' 1 are, respectively:

p(eiZ,X,y)=N(e,A-1) (30)

p(2r1ie,X,y)=W(v,A) (31)

where A = X X t’X t + a \  0=A_1 I X t ’Vt+Ab , v = v + T and A
l t=1 J V«=1 J

This suggests the following Gibbs sampling scheme for estimation and 

predictions. Starting from arbitrary values 0° and Z° for the model parameters 0 and I  

respectively, the algorithm generates, at the i,h iteration: 

i) values for the latent variables from:

where 01'1 and E1'1 correspond, respectively, to the values of 0 and E computed 

during the preceding iteration;

7 The Wishart distribution is the matrix extension of the Chi-square (%2) distribution. See 
Geweke (1988) for an algorithm generating Wishart pseudo-random variates.

yt = Xt0 + ut (29)

y’U = x Mt0M+e’U where EMt ~ n id ^ e ' 1) (32)
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ii) given the complete dependent variable vector y, an updated value 6' of 6 from its 

conditional posterior distribution:

J \  ;

j ,  0 ' = ^ ' +Ab and the transformed

variables X\ and y't are formed as in (29), using the Cholesky matrix of X1'1; 

iii) given 0' and y, an updated value X' of X from the conditional posterior distribution

Prior distribution parameters are set to the following values: b is a unit vector of 

dimension kx1, v=0, while A and A are identity matrices of dimensions k and n, 

respectively. The starting value of the X matrix is set to its OLS estimate from a 

regression on the multivariate model (27), based on the stacked sample of observations 

from both surveys. A corresponding starting value for 0 is then drawn from its conditional 

posterior distribution (30) with X=X°. Based on a two-by-two equations system, this 

sampling-based technique performs well on simulated data, as will be argued in the next 

chapter.

4.3.2. Pure vector autoregressions

The main drawback of the SUR model setting is that it only allows for 

contemporaneous correlation among the error terms of distinct equations. No other form 

of inter-dependencies is admitted between them. One possible way to explicitly account 

for such relationships would be to incorporate other dependent variables as regressors in 

each equation, hence resulting in a simultaneous equations model specification. 

However, as argued above, that kind of setting is not required for our prediction 

purposes. An alternative solution consists in introducing some dynamics into the system

of X’1:

where £t = yl -  Xt0' (34)
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of equations, either by incorporating a number of lags of the dependent variables as 

explanatory variables to form a vector autoregressive (VAR) model or by allowing for the 

vector of error terms to be autocorrelated. Provided that enough lags are present in the 

VAR model specification, however, the resulting error terms should not be 

autocorrelated.

Under a pure vector autoregressive (PVAR(p)) model specification, the system of 

equations (3) becomes:

where yt’= [S t Dt Et] and et = [e1t e2t e3t] are vectors of dimension 1xn, each 

parameter matrix < 3 > j,  for i=1,...,p, has dimension nxn, dt is a row vector of dimension d 

containing only deterministic variables (namely a constant and seasonal dummy 

variables in our case) for the moment, © is the corresponding parameter matrix of 

dimension dxn and p is the number of lags of the dependent variables included in each 

equation. Note that contrarily to the univariate case, here all equations include lags of the 

three dependent variables as regressors. Furthermore, the same number of lags of each 

dependent variable is assumed to appear in each equation. Consequently, every 

equation appearing in the system involves exactly the same set of explanatory variables.

Assume that the error terms in model (35) are distributed as et ~ NID(0,i;), for 

t=1,...,T, that is they can be contemporaneously correlated, but not 

autocorrelated. The model can be written in the more compact form:

where w t = [d t yw ’ ••• yt_p’j has dimension 1xm and r  = [0 ’ ... Op’]’ is the

corresponding parameter matrix of dimension mxn, with m=d+np. Performing the 

conventional stacking into a multivariate regression model, we obtain:

(35)
i=i

yt’= w tr + e t (36)
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Y = W r + E (37)

where Y  and E are matrices of dimension Txn, and W is an explanatory variable matrix of 

size Txm.

Since the same regressors appear in each equation of the multivariate regression 

model (37), stacking the columns of the W matrix yields:

y = (ln ® W)y + e  where e ~ N(0,E ® IT) (38)

with y and e both having dimension Tnx1, and y being mnx1.

Several kinds of priors have been considered in the literature. Kadiyala and 

Karlsson (1993, 1997) compare some of them, both from a theoretical and an empirical 

standpoint. They find that among the Minnesota prior (Litterman, 1980, 1986), the diffuse 

(or Jeffrey’s) prior (Geisser, 1965; Tiao and Zellner, 1964), the Normal-Wishart (i.e. 

natural conjugate) prior, the Normal-diffuse prior (Zellner, 1971) and the extended 

natural conjugate (ENC) prior (Dreze and Morales, 1976), the latest two impose the less 

restrictive structure on the prior variance-covariance matrix of the error terms, and 

consequently on the parameter posterior distributions. Furthermore, their Monte Carlo 

experiments show that, in some cases, these two types of priors lead to better prediction 

performances. In counterpart, moments of the resulting posterior distributions do not 

have closed form solutions and hence, must be evaluated numerically by using 

importance-sampling or MCMC techniques.

The ENC prior involves a reparametrization of the model that complicates its 

interpretation. For this reason, we prefer to use the Normal-diffuse prior which leads to 

conditional posterior distributions similar to those obtained in the preceding section for 

the SUR model. Note that this choice of prior may cause the posterior distribution to be 

bimodal, and hence the posterior mean to have low probability, although the authors do 

not expect this problem to occur frequently in practice. Results displayed in the next
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chapter serve as confirmations that such a problem does not occur in our Bayesian 

estimation of VAR models based on the Normal-diffuse prior assumption.

If a Normal-diffuse prior is assumed for the model parameters y and E,

respectively, summarized as y ~ N(g,'P) and £  °= |x| {n+1)/2, then the conditional 

posterior distributions have the following forms:

p(y I E, y, W) ~ N(y,¥-1) (39)

p ^ _1 ir,Y,w)~ w ^ ,E+(r-f)w ,w(r-f)]'1,Tl (40)

where ¥  = T~1+ 2"1 ® W ’W , y = 47_1|vF_1g+(c_1 <8>W'w)y], with f  and E defined, 

respectively, as the OLS parameter estimates and residual sum of squares from the 

multivariate regression model (37): f  = (W ’W)~1W’Y  and E = Y - W f , and y is 

defined accordingly.

Prior parameters are given the same values as in Kadiyala and Karlsson.8 Prior 

means on all model parameters are set to zero, apart from those on first own lags which 

are set to unity:9 E[©]=0, EfOO În, and E[<E»j]=0 for j=2,...,p. Prior covariances are all null, 

while prior variances for a parameter associated with an explanatory variable belonging 

to equation j are defined as follows:

v f l M )  = %11i for parameters on own lags, j, of length i; 

v ( M )  = rc2a f /ia k for parameters on lags of length i of variable k*j; 

v(©jk )= n3cf for parameters on the k* exogenous variable;

8 See Litterman for a discussion and motivations of these prior beliefs. Kadiyala and Karlsson 
employ the same parameter values as does Litterman, except that variances of parameters 
on lagged dependent variables of length q decrease at a rate 1/q instead of at a faster rate of 
1/q2.

9 Note that the random walk prior of Litterman (1980) does not impair on the stationarity of 
posterior distributions of parameters on first own lags, but does not rule out explosive 
process either.
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where of is the residual sum of squares of a p-lag univariate autoregression for the

dependent variable j. We adopt the commonly used range of values for the hyper­

parameters: jti=0.05, Ji2=0.005 and tc3=105.

Note that, as in the corresponding univariate case of the GLAG(p) model 

introduced in Section 4.2.2, the regression matrix involves missing variables referring to 

lags of dependent variables, for which no information is available. Moreover, the 

inclusion of these variables as regressors prevents the use, in the estimation process, of 

as many initial observations as the number of lags involved in such a model. In other 

words, the first p observations only serve for initialization purpose. Using the above 

conditional posterior distributions, the following Gibbs sampling algorithm with data 

augmentation can be implemented. Starting from arbitrary values of the model parameter 

vector, f  (with associated matrix r°), and the variance-covariance matrix, Z°, the 

algorithm generates, at the i,h iteration:

i) values for the error terms as e|f1 ~ NID(0,2I_1) with the help of which we can 

compute values for the missing dependent variables from:

where T '1 and I 1'1 correspond, respectively, to the values of F and X computed 

during the preceding iteration, and w'Mt is defined similarly to w, with the missing

variables computed for past observations. For instance,

Note that the last p variables generated in this way will serve as explanatory 

variables for observations T2+1 ,...,T2+p;

for t = T-  ^
(41)

values of the lagged dependent variables replaced by the values of these

< r 1+i = K ,+1 Vivrr, V i "  VT.-pJand
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ii) given the completed matrices Y* and W' created with values computed in the 

preceding step, OLS estimates f  = (W "W ')~1W "Y ‘ (with associated parameter

vector y') and E' = Y' -  W 'f  can be computed. An updated value E' of Z is then 

obtained from the conditional posterior distribution of E"1:

^ ) “1 ~p^T1 i r i“1,Y l,W i)~ W ^ 'E 1 + (t w - f i) w i,W i^ i-1 — f*1 (42);

iii) given y1, W1, y1 and Z' as computed above, an updated value V of y from its 

conditional posterior distribution:

where W' = +

Similarly to the SUR model treatment, starting values for the parameters of the 

VAR model are determined as follows. Firstly, the starting value of the error variance- 

covariance matrix, Z°, is computed as the OLS estimate of Z from the multivariate 

regression model (37), based on the incomplete sample, without concern of the 

observations corresponding to the unobserved values of the dependent variable or its 

lags. Secondly, the starting value of the y parameter vector is drawn from its conditional 

posterior distribution (39) using the OLS estimates computed in the preceding step.

4.3.3. Generalized vector autoregressions

In this section, we combine the tools developed in the two preceding sections in 

order to produce an estimation process for a general VAR model of the form (35) where 

the independent variable row vector may contain stochastic variables, as well as 

deterministic ones. The resulting Gibbs sampling algorithm is a generalization of what 

Kadiyala and Karlsson proposed. The method is similar to that described in the Section

4.3.2, except that the Kronecker representation of the system in form (38) is no longer
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valid, because the regression matrix is not necessarily the same across equations. More 

precisely, the explanatory variable matrix is defined based upon the corresponding line 

of the Xt matrix in (28) which contains zero elements in positions where the variable is 

not included in the given equation. Nevertheless, the same number of lags is still 

assumed for all dependent variables appearing in the system. The notation can be 

modified in an obvious way to impose equality restrictions on parameters across 

equations.

We consider two different representations of the generalized vector 

autoregressive (GVAR(p)) model: the long and short format representations. The former 

corresponds to a mix of the SUR representation (27) and the PVAR(p) formulation (36) 

and can be written as:

yt = zt5 + pt where ju.t ~ NID(0,E) (44)

and yt =(St,Dt,Et)’ and j i t = (p-n.M t̂-M^t)’ are vectors of dimension nx1, while 5 is a

qx1 vector of parameters (with q=k1+k2+k3+np) associated with the explanatory variable 

matrix of dimension nxq defined as follows:

Xit yw  •-  y,-p 0 0 . .. 0 0 0 . .. 0

Zt = 0 o . .. 0 X2t y i- i ••• yi-p 0 0 . .. 0 (45)
0 o . .. 0 0 o . .. 0 *3t y'w ••• yi-P.

We obtain the equivalent of (38), which does not involve a Kronecker product, however, 

by stacking the columns of the matrices appearing in (45):

y = Z5 + p where p. ~ N(0,X® IT) (46)

and y and p. have dimension Tnx1 while Z is Tnxq.

In the short format representation corresponding to (36), the model is expressed

as:

yt’= s tA + ut (47)
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where st =[rt yM  ... y t_p], with the r-dimensional r, row vector containing all distinct

elements appearing in {x1t,X2 ,,X3 t}, as before. The parameter matrix A, of dimension sxn,

is defined accordingly, with zero elements, Ay = 0 , appearing in positions where the

corresponding explanatory variable, rit, does not enter in equation j, and s=r+p. 

Performing the conventional stacking of the observations in (47), we obtain a multivariate 

regression model of the same form as (37):

where Y  and U are matrices of dimension Txn, and S is an explanatory variable matrix of 

size Txs.

Using the above notation, and making the most of what has been learned in the 

two preceding sections, the following Gibbs sampling algorithm with data augmentation 

has been developed to estimate the GVAR model. Starting from arbitrary values of the 

parameter vector, 5° (with associated matrix A0), and the variance-covariance matrix, E°, 

the algorithm produces, at the ith iteration:

i) values for the error terms as ~ NID(0,£'~1) with the help of which we can 

compute values for the missing dependent variables from:

where 81'1 and I'*1 correspond, respectively, to the values of 8 and £ computed 

during the preceding iteration and z ^  is defined similarly to zt, with the missing 

values of the lagged dependent variables replaced by the values of these 

variables computed for past observations. Note that the last p variables 

generated in this way will serve as explanatory variables for observations 

T2+1,...,T2+p;

ii) given the completed dependent variable vector y* and the corresponding 

explanatory variable matrices Z' and S' created with values computed in the

Y = SA + U (48)

for t = T,
for t = 1, +1 T2

(49)
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iii)

preceding step, computes the OLS estimates 8‘ = (Z'’Z') 1Z1 ’y1 and

p.1 = y' — Z'8‘ , and forms the corresponding restricted estimates matrix A' with the 

help of which we can generate an updated value I '  of I  from the conditional 

posterior distribution of X'1:

fcY ~p(sr1 I Aw ,yi,Si)=W  XAtAt' + ( '̂-1 - A ')s i,s i( ii-1 -  A')
jt=l

-1  ' '  

>T (50)

where A'"1 stands for the value of A calculated during the preceding iteration;

given y‘, X, and l!  as computed above, an updated value 8' of 8 from its 

conditional posterior distribution:

8i ~ p (8 II i,yi,Zi )=N(^8i, ^ i )"1l  (51)

where ¥  =*F“1 + SZj'Zj , 8f ^ _1g+
t= i

and the transformed

variables are defined in the following way: y| = Q'yt and z[ = Q'z^ with Q' being 

the Cholesky matrix of (X1)'1.

Additional model parameters are assumed to follow the same prior distributions 

as those corresponding to deterministic explanatory variables. Starting values for the 

model parameters are determined in the same way as in the preceding section.
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This chapter presents the results obtained from the estimation of the 

simultaneous equations model described in Chapter 4. First, we check the reliability and 

accuracy of the Bayesian estimation methods developed in the preceding chapter by 

means of Monte Carlo experiments based on simulated data. Second, we apply these 

sampling-based techniques to produce complete time series for the three transport 

aggregates: the private vehicle stock, the average distance they travel and their 

weighted fuel consumption rates. The model estimation is undertaken separately for 

cars, and for light trucks and vans.

This chapter presents the final results. The one following will question their 

validity, reliability and robustness. We start by describing the model specifications 

selected based on a series of diagnostic tests that will be performed in the next chapter. 

Alternative formulations are also provided. Recall that the model specification must rely 

on explanatory variables from external sources, since the survey variables would involve 

missing information for the intermediary period, between the surveys. We then tabulate 

the Bayesian estimates obtained for model types and specifications that will be shown to 

yield the best prediction results in the next chapter. Finally, tables and graphs of the 

resulting predictions are presented and discussed.

5.1. Monte Carlo experiments

In order to test the performance of each sampling-based technique described in 

Chapter 4, we conduct Monte Carlo experiments based on simulated data. We first 

check the methods applying to single equation estimation and then turn to the estimation 

of systems of equations. The main advantage of the simulations is that the model 

features, variables and parameter values are known to the investigator. Consequently, 

the accuracy of the Bayesian estimates can be evaluated. Furthermore, by varying the
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bounds of the prediction interval, an investigation of the flexibility and stability of the 

diverse sampling-based techniques can be undertaken.

Recall that missing information represents nearly 34% of the cars sub-sample, 

and 45% of the light trucks and vans sub-sample. Therefore, a reliable estimation 

method is expected to yield good predictions for values in that range. In all experiments, 

we generate samples of 100 observations and successively omit from 10 up to 90 

observations in the middle of the sample, with an increment of 10 in each step. For each 

of experiment, we run the programs based on Bayesian algorithms and save the 

estimation and prediction results. These are summarized in a series of tables and graphs 

in Appendix B.

Note that our goal here is not to produce diagnostic tests of misspecification, but 

rather to check how well the different Bayesian methods perform at estimating a correctly 

specified model. Hence, we assume the same form for the econometric model and the 

underlying data generating process (DGP) in each experiment. Since predictions are 

calculated as the sample means of the augmented dependent variable values generated 

from MCMC draws, they are generally less variable than the actual values simulated for 

the needs of the experiments. We can think of the Bayesian predictions as being the 

average of the simulated dependent variable values if the Monte Carlo experiment was 

repeated several times.

Since MCMC draws, such as those generated by the Gibbs sampler, are 

correlated by construction, the sample variance does not provide an accurate estimate of 

a parameter variance. Carlin and Thomas (2000, Chapter 5, pp. 170-172) suggest a 

correction method for variance estimation in the presence of positively correlated MCMC 

draws. However, this formula cannot be applied in the present framework because the 

Gibbs sampling draws are generally negatively correlated. Instead, we make use of
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another of their suggestions. Sample variance is rather calculated based on draws at 

specific increments (every 100 iterations) in order to reduce correlation among them.

According to Carlin and Thomas, the Normal approximation holds even in the 

Bayesian framework. In consequence, regardless of which of the above variance 

estimates is used, a confidence interval of the parameters conditional expectation might 

be calculated in the conventional way. Since predictions are computed through the data 

computation stage, as additional model parameter estimates, this holds for them as well. 

Student-t statistics can be derived from the same principle. Critical values for these tests 

are drawn from the standard normal distribution with m degrees of freedom. In our case, 

m represents the number of successive batches of length k used to compute the 

variance estimates (N-n=mk, with k=100). Since several iterations are performed for 

each Gibbs sampling experiment, z^=1.96 is satisfactory for a test at the 95% confidence 

level.

5.1.1. Simulations involving single equation models

Table B.1 of Appendix B presents the estimation results for the first series of 

Monte Carlo experiments based on a simple linear regression model. Although their 

precision generally decreases with the length of the prediction spell, all parameter 

estimates are significant at the 5% level, except the intercept which is not significant at 

conventional levels when 90 observations are removed from the sample. In most cases, 

real values fall within one standard deviation of the parameter estimates. In all cases, the 

95% confidence interval contains the real coefficient values.

Figure B.1 shows that, compared to real values of the dependent variable, 

predictions are stable and accurate, even for large prediction intervals. Figure B.2 

provides a typical illustration of the predictions’ dispersion. It illustrates the accuracy of 

predictions with respect to the observable path when 50% of the sample information is
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missing. Except for a couple of rather extreme values, generated values of the 

dependent variable are contained in the 95% confidence interval around the predictions. 

The prediction error, measured as the difference between real and predicted values, is 

depicted in Figure B.3. As expected, the figure shows that the errors are smaller for 

shorter prediction intervals. Otherwise, the prediction errors’ path display no particular 

pattern: errors are distributed symmetrically around the zero mean.

For the second series of Monte Carlo experiments, we started with the simplest 

case of a single (one- or four-period) lagged dependent variable, and successively 

increased the number of lags included as explanatory variables in the model 

specification. Table B.2 displays the results obtained by estimating a linear regression 

model involving a constant term and a four-period lagged dependent variable. Estimation 

results for the model involving a one-period lagged dependent variable are not provided 

because they were very similar to the preceding ones.

All parameter estimates are significant at the 5% level, except the estimate of p 

which is only significant at the 10% level for 80 omitted observations, and looses its 

significance (at conventional levels) when the number of missing observations is further 

increased. The relatively large estimate of the error variance indicates the imprecision of 

the estimation technique for 90% of missing information. Real parameter values all fall 

within the bounds of one standard deviation from the Bayesian estimates.

Despite the relatively good precision of the parameter estimates, the sampling 

based method does not yield very accurate predictions. The comparison with the 

generated data provided in Figure B.4 reveals that predictions are much less variable 

than the actual series. While the latter displays fluctuations of large amplitude, the former 

appears almost completely flat. As expected from a stationary process, since the 

variations in the dependent variable are marginal at the beginning of the prediction 

period, they tend to vanish thereafter. In fact, the prediction path varies much less than,
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but in phase with, the real values’ trend, as illustrated in Figure B.5. Since the predictions 

are not very precise, their 95% confidence interval generally encompasses the real 

values of the dependent variable.

These observations are in accordance with the above remark regarding the way 

Bayesian predictions are calculated. This was also expected from the underlying 

dynamics, and the removal of relevant mid-sample information. Given the relative 

insensitivity of the predictions, the prediction errors displayed in Figure B.6 follow a 

similar path to the original data one. They however oscillate around the zero mean, 

which indicates that the predictions correctly average the simulated data.

Note that when we set the true value of the lagged dependent variable to a 

smaller value, such as 0.1, its parameter estimate does not show up to be significant at 

conventional levels. However, this is not particular to that type of model: Monte Carlo 

experiments have shown that, in general, coefficients associated with explanatory 

variables which only have marginal effects are difficult to estimate by using the sampling- 

based techniques considered in this study. Also, the prediction performance does not 

improve when a more extended lag structure is allowed for in the model specification. 

We obtained very similar results by successively including from one up to six lags of the 

dependent variable in the regression. This is why these results are not reported in the 

appendix. Remark that since the impact of past values on the current one is generally 

smaller the more distant these values are from each other, it is harder to estimate 

accurately coefficients at long lag length.

The third series of simulations involves a linear regression model with an explicit 

structure of autocorrelation of order four for its error terms. Except when 80% or more of 

the information is removed from the estimation sample, parameter estimates reported in 

Table B.3 are generally precise and accurate. The model parameters are significant at 

the 5% level and the true values lie within one standard deviation of the parameter
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estimates. The estimated error variance is generally larger than its assumed value, 

however. Autocorrelation parameters <J>i and <t>4 are estimated quite accurately. Of smaller 

amplitude (in absolute terms), §2 and <j>3 estimates are not significant at conventional 

levels, but have the expected sign, and their true values fall within one standard 

deviation from the parameter estimates.

According to Figure B.7, compared to real values, predictions seem remarkably 

accurate. Furthermore, the 95% confidence interval generally embeds the true generated 

values of the dependent variable, as illustrated in Figure B.8. However, it is apparent 

from Figure B.9, that predictions are more dispersed and less in accordance with real 

values of the dependent variable at the end of the prediction interval than at the 

beginning. Prediction errors are also smaller on shorter intervals.

5.1.2. Simulations involving simultaneous equations models

In order to check the performance of sampling-based techniques applying to 

systems of equations, we consider models involving two equations. Table B.4 presents 

the estimation results for the series of Monte Carlo experiments relating to the SUR 

model. Model parameters are significant at the 5% level in all simulations, except the 

intercept in the first equation which is only significant at the 10% level when 90 

observations are removed from the estimation sample. Except possibly when 20 

observations are missing, the real value of the parameter lies within one standard 

deviation of the estimate for each model parameter. It is always contained within the 

95% confidence interval. The covariance between the two error terms is never 

significantly different from zero at conventional levels, but variance error terms both are. 

Furthermore, the one standard deviation intervals around the variance parameters 

contain the true variances, except that of the second equation with 20 missing 

observations. The 95% confidence interval, however, includes it.
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Predictions of both dependent variables, given in Figures B.10 and B.11, seem 

relatively accurate although less variable than the corresponding observable path. In 

terms of dispersion, the true value of Yi is more likely to be contained within the one- 

standard deviation from the prediction, or the 95% confidence interval, than that of Y2, 

which is generally more volatile. Figures B.12 and B.13 provide typical illustrations of the 

precision of predictions of Y■, and Y2, respectively, when 40 observations are removed 

from the middle of the estimation sample. Predictions of Y2 are also more frequently out 

of phase with respect to the observable path than those of Yi. Prediction errors on Ŷ  are 

smaller and symmetrically distributed around the zero mean for relatively short prediction 

spells, but dispersed and more important at the end for longer intervals, as depicted in 

Figure B.14. Based on Figure B.15, the SUR model underestimates values of Y2 on short 

prediction intervals, but overestimates them on longer spells. Overall, the Bayesian 

estimation of SUR models seems to yield very adequate predictions.

Table B.5 presents the estimation results for a pure vector autoregressive model 

involving only one lag of each dependent variable in each equation (PVAR(1)). Large 

estimated variances of error terms indicate a convergence failure when 80 observations 

or more are removed from the estimation sample. Apart from these limiting cases, model 

parameters are generally significant at the 5% level, except possibly the first equation’s 

intercept which is significant at the 10% level when 70 observations are omitted from the 

prediction sample, and some coefficients relating to the lag of the other dependent 

variable. Parameters on own lags are highly significant and estimated relatively 

accurately, while it is generally harder to estimate cross-effects.1 Nonetheless, the cross­

equations coefficients have the expected sign and are of the expected order of

1 When we hypothesized smaller cross-effects (in absolute values), we obtained non 
significant results. But this does not only apply to this particular type of model: as outlined 
above, it is generally difficult to estimate small parameters accurately by using sampling- 
based techniques.
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magnitude, although smaller, in absolute terms. Again for 70% of missing information or 

less, parameters of the error variance-covariance matrix are estimated quite accurately.

As in the univariate case of a pure autoregression, predictions of the PVAR(1) 

model do not vary enough to meet the fluctuations in the observable trends. This is 

shown in Figures B.16 and B.17. In spite of that, the true dependent variable values 

fluctuate around the more stable trends displayed by the corresponding predictions. 

Variations in predictions are more accentuated at the beginning of the prediction interval, 

and tend to vanish at the end. The observed Y, series is almost always contained within 

the one-standard deviation interval from predictions but sometimes exceeds it (e.g. 

Figure B.18), while the real Y2 series often crosses-over the corresponding interval from 

below (e.g. Figure B.19). Both series are nevertheless embedded in the 95% confidence 

interval around predictions. The lack of precision of one dependent variable’s prediction 

carries over to the other. Figures B.20 and B.21 corroborate the fact that Yi is actually 

being overestimated, while Y2 is underestimated.

Complementary simulations have shown that the prediction performance of the 

PVAR does not improve when longer lag structures (up to order 6) are accounted for. 

The generated series remain more variable than the predicted ones. For lack of space, 

we do not provide these additional results. Note that as in the univariate case, the 

precision of parameter estimates decays with the lag length, as past effects on current 

variables become negligible.

Simulation results for a generalized vector autoregressive model of order 1 

(GVAR(1)) are provided in Table B.6. Large error variances indicate convergence failure 

for 90 missing observations. For smaller prediction spells, the model parameters are 

generally significant. Parameters associated with exogenous variables are estimated 

quite accurately (except the second equation’s intercept which is slightly 

underestimated), as well as those on first own lags. In contrast, as for the PVAR, it is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

91

more difficult to obtain accurate estimates of the cross effects. Indeed, the parameter 

corresponding to the lag of Y2 in equation 1 is underestimated, although it is significant at 

the 5% level up to 60 missing observations. Similarly, the coefficient of the lagged 

variable Y, in equation 2, which is negative, is overestimated, while it is significant at the 

5% level up to 40 missing observations. The error variance-covariance parameters are 

estimated accurately, except for the smallest sample size.

Introducing stochastic variables into the VAR model formulation clearly improves 

the model fit, as show Figures B.22 and B.23. Now, the predictions follow more closely 

the observable trends in the dependent variables and display similar fluctuations, 

although they are of smaller amplitude. As expected, their accuracy worsens with the 

stretching of length of the prediction interval. Figures B.24 and B.25 provide typical 

illustrations of the dispersion of predictions, together with the real dependent variables’ 

paths. Real values almost never cross the 95% confidence interval around predictions 

and when they do so, it is by a very narrow margin. The distributions of prediction errors 

displayed in Figures B.26 and B.27 seem to indicate an underestimation of both 

dependent variable values. But in fact, the paths are relatively regular when we make 

abstraction of the limiting cases with 80% or more of missing information.

For lack of space, we do not provide Monte Carlo results for longer lag structures. 

Note that the general conclusions derived above also hold for more extended GVAR(p) 

models. Similarly to PVAR(p) models, however, the precision of parameter estimates 

decays with the lag length. In fact, as these usually have marginal effects on the 

dependent variables, predictions do not vary that much with respect to p in the GVAR(p) 

model setting.

Overall, the different Monte Carlo experiments performed in the framework of this 

empirical analysis proved that the Bayesian method is very promising for our practical 

application. With the exception of purely autoregressive models whose values appeared
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to be particularly hard to extrapolate, we obtained very satisfactory results, both in terms 

of estimation and prediction. Now that the sampling-based techniques have been tested 

in a controlled environment, let us examine how they perform in practice.

5.2. Model specification

In this section we examine, one by one, the exogenous variables whose 

explanatory power has been tested in each equation specification. As private vehicle use 

varies widely by vehicle type, cars and light trucks/vans are always processed 

separately. While the dependent variables are derived directly from the surveys, the 

independent variables are drawn from external sources of information.

Most of the exogenous explanatory variables were taken from Statistics Canada’s 

CANSIM disk databank, while others were drawn from files kindly provided by Natural 

Resources Canada (NRCan) and Environment Canada (EC). Other explanatory 

variables were found on the Bank of Canada’s and the U.S. Federal Reserve Bank’s 

Web sites. Potential predictors were identified through a parallel macroeconomic study of 

the private transportation sector (see Boucher, 1998b).

Among the explanatory variables that were identified, some were not available for 

the entire target period, and others did not exist at the required quarterly aggregation 

level. Variables reported on a monthly basis had to be aggregated to the quarter level by 

calculating sums or averages of the values for the three months in the quarter. Others 

were reported only annually, so the annual value had to be repeated for each quarter of 

a given year in the model formulation. For lack of taking into account seasonal 

fluctuations in the transport aggregates, these variables give an indication of their 

average annual trends.

Determination of the specifications for each equation required a long preliminary 

selection process. The explanatory power of each model formulation was tested by
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calculating the ordinary least squares (OLS) estimates based stacked samples from both 

surveys, without consideration for the missing values in the intervening period. Particular 

attention was paid to selection of the best predictors, and so ignored any multicollinearity 

among them. Additional diagnostic tests will be conducted in the next chapter to 

determine if alternative specifications cause any changes in predictions.

The basic specification for each dependent variable, with only right-hand side 

exogenous explanatory variables, is described below. Note that these specifications are 

the ones that were selected following a series of diagnostic tests performed in order to 

determine the best model for prediction purposes. This will be followed by a brief 

definition of each explanatory variable appearing in the formulations. The reader is 

referred to the beginning of Appendix C for a more detailed description of the 

explanatory variables, their origin and, if applicable, the way they were modified to fit the 

econometric context of the study. Although cars and light trucks/vans were processed 

separately, we finally ended up with the same kind of specification for both vehicle types: 

S = p0 + p-jREGIST + p2 VPRICE + p3FALL + p4 WIN + p5SPR + u1 

D = p 0 + P-jPCREGIST + p2FALL+pgWIN + p4SPR + u2 (1)

E = p0 + p^CR + p2FALL + p3 WIN + p4SPR + u3

Below we give, in alphabetical order, a list of the explanatory variables in the

equations, with a brief definition of each. We will then comment on the

inclusion/exclusion of certain predictors from the above specifications.

FALL, WIN, SPR: Dummy variables for the Fall, Winter and Spring quarters,

respectively;

FCR: On-road fuel consumption rates of cars, annual series, expressed in

litres/100 kilometres;

PCREGIST: Per capita registrations, based on the ratio of the number of

passenger automobiles registered in Canadian provinces to the 

number of people of driving age (16 years or more);
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REGIST: Annual number of passenger automobiles registered in Canadian

provinces. The passenger automobile category includes light trucks 

and vans used for private purposes. It is thus defined in opposition 

to commercial vehicles and can be used in modelling variables for 

both light trucks/vans and cars;

VPRICE: Average price of new vehicles, on a quarterly basis, in constant

dollars of 1986;

Note that the selected formulations for each equation involve the annual figures 

currently used by NRCan. We also considered an alternative specification from the 

transportation literature, which involves income and fuel prices in all equations (e.g. Dahl 

and Sterner, 1991). Alternatively, annual real personal disposable income (ARVDPC) 

and quarterly national income (QNATINC), both in constant dollars of 1986, were used 

as measures of revenue. As indicators of fuel prices, we successively considered the 

quarterly series of a composite consumer price index of different fuel types (QFCPI), and 

an average of unleaded fuel prices (QUNLFP), both in constant dollars of 1986. As will 

be shown in the next chapter, the original specifications yield better results, as far as 

predictions are concerned.

During a preparatory stage to the modelling process, it was noted that quarterly 

fuel sales (QFSALES) would be a better predictor for the total distance travelled than 

annual registrations. On the one hand, quarterly retail sales of gasoline had been shown 

to be an effective support for the series on total distance travelled by automobiles. 

However, it was finally determined that annual passenger automobile registrations 

captured the overall trend of the series more effectively. Combined with other 

explanatory variables that factor in seasonal variations in the series requiring prediction, 

registrations were thus preferred to fuel sales. Contrary to what one might expect, the 

correlation between quarterly gasoline sales and per capita registrations was not too 

strong, allowing for both variables to enter the average distance formulation jointly.
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Similarly, annual fuel sales to light trucks and vans had initially been identified as 

a good predictor for the total distance travelled equation by this type of vehicles. Indeed, 

NRCan had provided us with the series for annual fuel consumption by vehicle type.2 

Since gasoline is not the main type of fuel used by light trucks and vans, quarterly 

gasoline sales would not be as good as an explanatory variable in this equation. For light 

trucks and vans, but not cars, the annual fuel consumption series yielded better results 

than quarterly gasoline sales. However, NRCan did not accept our request for an update 

of the series ending in 1995, so we were unable to test it as a predictor for the distance- 

travelled-by-light-trucks/vans equation. Registrations were thus selected for this equation 

too.

During the preparatory study, it was agreed, for the sake of convenience, that we 

would produce a model for total distance travelled by all vehicles, instead of the average 

distance travelled per vehicle. At first glance, it seemed easier to explain changes in the 

former than in the latter. Our plan was to deduce posterior predictions for average 

distance by dividing predictions of the total distance by those of the average vehicle 

stock. However, further tests showed that, in the resulting predictions of average number 

of kilometres driven, seasonal variations were much too low.

This may be explained by the fact that the models developed for the average 

number of vehicles and total distance equations were very similar. In particular, variables 

capturing quarterly variations, such as seasonal dummy variables, would generate 

effects that would tend to cancel out one another. Furthermore, preliminary standard 

tests based on stacked data from both surveys indicate that the total distance series

2 The data compiled by NRCan present an interesting alternative in this particular case. In 
addition to disaggregating consumption by vehicle type, NRCan calculates total light 
truck/van consumption of all kinds of fuel used by this vehicle type. Data on fuel consumption 
by vehicle type come from the Trans.xls Excel file, which NRCan uses for preparing its 
annual publication.
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might be integrated, while the average distance series are not. Consequently, the 

decision was taken to model average distance directly.

In order to capture quarterly fluctuations in each series requiring predictions, 

seasonal dummy variables and quarterly averages of Canadian temperatures (in degree- 

days) were alternatively considered. The Summer quarter, being the reference category 

for the first set of dummy variables, was excluded from the model specification. In all 

cases, the seasonal dummy variables were shown to capture quarterly variations more 

effectively. Note however that the temperature variable could not be tested as a predictor 

in the specification of equations regarding cars, as the series starts in 1981.

Interest rates (IRATES) were tested in the vehicle stock equations because, as 

pointed out in Section 2.4 of Chapter 2, a privately owned vehicle is a durable good 

whose purchase should be considered as an investment. We considered interest rates 

on personal consumer loans as a proxi for those on private vehicle purchases. However, 

this series could only be used as a regressor in specifications regarding light trucks and 

vans, because it starts in the fourth quarter of 1980. For cars, we tried a similar series of 

U.S. interest rates3 and a quarterly average of Canadian interest rates on prime business 

loans from chartered banks.

Another exogenous variable whose explanatory power has been tested in the 

ownership and use equations is the quarterly gross domestic product (GDP) of the public 

transit sector. This aimed at accounting for the substitution between private versus public 

transport modes. Fixed costs associated with owning a private vehicle, as opposed to 

variable costs reluctant to using such a vehicle, were tested in the ownership and use

3 The U.S. and Canadian interest rates on consumer loans move together, given the 
interdependency of the two economies. Testing based on the number-of-light-trucks/vans 
equation showed that the effectiveness of the two series as explanatory variables was about 
the same.
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equations, respectively. These variables were computed as quarterly averages of 

relevant CPIs.

5.3. Estimation results

Estimation and prediction results obtained from the application of the Bayesian 

method to the econometric model (1) are displayed in the supporting Appendix C. 

Although parameter estimates are only of secondary interest, comparing estimation 

results from different model types and specifications sheds light on the 

contemporaneous and dynamic relationships existing among variables under study. It 

also permits the evaluation of the relative performance of competing MCMC estimation 

techniques based on distinct prior assumptions. This provides some leads to determine 

the best prediction model.

Reporting all estimation results produced in the framework of this analysis would 

be too space consuming. We only tabulate results for the selected model types and 

specifications,4 and comment on divergences obtained with alternative formulations. 

Arguments to support our model choice will be provided in the next chapter. Specifically, 

the generalized vector autoregressive model (GVAR(1)) involving, in addition to the 

stochastic and deterministic variables listed in the preceding section, a one-period lag of 

each dependent variable, is shown to yield the most reliable and accurate predictions. 

Parameter estimates for such a model are presented in Tables C.1-C.3 of Appendix C, 

together with their standard errors and Student-t statistics. CPU times required for the 

estimation of each model are also reported in Table C.3.

Given the large number of potential different specifications, only statistically 

significant exogenous variables are kept in the basic model formulations. Consequently,

4 Estimation results for other model types and specifications may be obtained from the author 
upon request.
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almost all variables figuring in the simple linear regression models have strong 

explanatory power. Seasonal dummy variables are the exception in equations regarding 

the average numbers of vehicles. While these variables are not significant (at 

conventional levels) in the cars equation, solely the Fall dummy variable is significant 

(and only at the 10% level) in the specification for light trucks and vans. Its coefficient is 

negative, indicating that the light trucks and vans stock is larger in the Summer than 

during the Fall season.

This is consistent with both people’s tendency to garage part of their vehicles 

fleet in arid seasons, and to buy vehicles for private use in seasons with milder climates. 

Given that cars have less robust characteristics, we would expect these effects to have a 

larger influence on their stock, however. Figures might be mitigated by the inclusion of 

minivans, whose features and use resembles more closely that of cars, in the light trucks 

category. Since the vehicle stock is likely to vary from one quarter to the next, and given 

that no other explanatory variable satisfactorily accounts for such fluctuations, we felt 

that seasonal dummy variables should be kept in the model specification despite their 

lack, or poor degree, of significance.

First attempts to include some dynamics into the basic simple linear regression 

framework provide the following conclusions. Introducing a lagged dependent variable as 

a regressor into the model specification mainly affects the estimates of the average 

number of light trucks and vans equation. In that case, the coefficient of the one-period 

lagged dependent variable is nearly 0.8 and highly significant.5 Once this variable is 

added to the model specification, the parameter on passenger automobile registrations is 

no longer significant at conventional levels. The resulting predictions follow a similar path 

as their simple linear regression model counterpart, but seasonal fluctuations are less

5 In alternative model specifications involving income and fuel prices, however, the 
corresponding parameter turned out to be small (about 0.3) and not significant.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

9 9

accentuated. For other equations, the additional parameter is likewise positive, relatively 

smaller and not significant. Hence, predictions are not significantly altered.

Within more extended GLAG(p) structures, parameters associated with longer lag 

lengths are generally unsignificant and smaller than those on first lags. In spite of that, 

predictions of the average number of light trucks and vans vary considerably with the 

allowed maximum lag length, increasing at a faster rate for larger values of p. Statistical 

criteria, such as those proposed in the next chapter to determine the appropriate order of 

an autoregressive process, suggest that the inclusion of a single lagged dependent 

variable should be sufficient to model the light trucks and vans fleet size accurately, 

provided that other exogenous factors are also accounted for in the estimation process.

Predictions of the PLAG(4) model, involving a single four-period lagged 

dependent variable, also differ considerably from the previous ones. Although all LAG 

models’ predictions follow the same trend, seasonal fluctuations resulting from the 

PLAG(4) estimation are more accentuated, in conformity with those of the linear 

regression model (LIN).6 In spite of that resemblance, the coefficient of the fourth-order 

lagged dependent variable is relatively large (04=0.517) and highly significant.

Which of the PLAG(4) or the LAG(1)7 models better fits the light trucks/vans stock 

data is unclear, although the argument developed in Section 4.2.2, while introducing the 

econometric treatment for LAG models, favours the use of the LAG(1), which accounts 

for the fact that the vehicle stock in a given quarter is determined as the stock in the 

preceding quarter plus a residual term. Recall that the remainder equals the difference 

between new vehicle sales and old vehicle sent to scrap. Furthermore, since we are 

conditioning on the first p observations, using lags of shorter lengths results in an

6 The PLAG(4) yields even more volatile predictions than the LIN at both ends of the prediction
interval.

7 For an obvious reason, we remove the capital “G” letter in front of the GLAG(p) notation 
when we refer to the model involving a single fag of order 1, and write LAG(1) instead.
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improvement in the number of degrees of freedom. Hence, at least from a theoretical 

point of view, the LAG(1) model should provide more reliable results.

An alternative, though somewhat restrictive,8 route to capture the underlying 

dynamics in single equations is to introduce an explicit autocorrelation structure of order 

four (AR(4)) for the model’s error terms. At least for order one, autocorrelation parameter 

estimates are significant in both vehicle stock equations. Note, however, that the 

estimate of (|)1 for light trucks and vans is almost twice as large as that for cars. 

Accordingly, predictions of the AR(4) model disagree with those of other models more 

markedly in the former case. The average distance and weighted fuel consumption 

equations seem less adversely affected by serial correlation of either type.9

In order to account for possible interdependencies among the three transport 

aggregates, simultaneous equations models have also been considered. Since it 

represents the simplest form of multidimensional model, relying only on 

contemporaneous and exogenous information, the SUR model has first been estimated. 

Compared to its single-equation counterpart, the simple linear regression, SUR 

estimation generally improves the precision of all parameter estimates. However, 

coefficient estimates themselves do not change that much (apart possibly for the 

intercept) neither in sign nor in magnitude. Provided that some estimated off-diagonal 

elements of the error variance-covariance matrix are significant in the cars model, it is 

justified to estimate the system of equations as a whole. Predictions of the average

8 Remember that the explanatory variables matrix does not involve any lagged dependent 
variables here. As the analysis of the estimation results will show, once an extended lagged 
structure is accounted for explicitly in the model formulation, there is no remaining 
autocorrelation in the residuals.

9 In the alternative model specification for the light trucks and vans fuel efficiency, the four- 
period lagged dependent variable coefficient was found to be large (>0.6) and statistically 
significant. Likewise, the first-order autocorrelation parameter estimate is larger than 0.5 and 
significant.
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number of vehicles (of both types) are higher for the SUR model than for single-equation 

models, especially at the beginning of the prediction interval.10

As already highlighted in Chapter 4, predictions could also be derived from the 

estimation of an unrestricted reduced form (URF) of the system of equations. The 

estimation method developed in Section 4.3.1 is applicable to the URF because it can be 

expressed in the form of a SUR model. We have estimated an URF of our structural 

model using the Gibbs sampling algorithm with data augmentation. Since registrations 

and per capita registrations are highly correlated, they could not be both incorporated in 

the URF. We chose to leave out the second variable because the former one better 

explains the number of vehicles, which is the hardest to predict among the three 

dependent variables.

In terms of predictions, we obtained very close results from the SUR and URF 

estimation. Given that it is easier and more compelling to interpret the estimates derived 

from the structural form of the model, and also because these can be put into 

correspondence with more restricted estimates obtained in the univariate case, we 

decided to keep focussing on the structural form of the system. Nevertheless, we also 

report on the URF predictions for comparison purposes in the next section.

When an extensive autoregressive structure is allowed in the form of a pure 

vector autoregressive (PVAR) representation, results change drastically. Except for the 

deterministic variables (and even the constant and seasonal dummy variables are not all 

significant in the vehicle stock equations), only coefficients on the first own lagged 

dependent variables are significant. Their estimates are positive in all cases. In spite of

10 Predictions of the SUR model differ markedly according to the model specification 
(registrations-vehicle prices versus income-IPC settings). Not only the gap between those 
predictions is large, but also seasonal fluctuations appear to happen at different episodes. 
The selected model specification brings predictions better in accordance with those of 
alternative model types.
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that, results vary according to the lag length. We include up to six lags of each 

dependent variable in each equation. Predictions of the vehicle stock increase with the 

number of lags included in the model, with those at highest lag lengths falling more in the 

range of other models’ predictions. As expected, vehicle ownership is positively 

correlated with the average distance travelled and negatively correlated with the fuel 

consumption rate. The latter two variables appear to be negatively correlated as well. 

Off-diagonal elements of the variance-covariance matrix are not significant, however.

Reintroducing stochastic variables in the VAR setting clearly improves the model 

fit. Indeed, most of the variables having an explanatory power in more restrictive 

formulations remain significant in the GVAR model. Furthermore, coefficients on first own 

lagged dependent variables continue to be significant. For comparison purposes, we 

wished to include the same number of lags in the GVAR and PVAR models. We consider 

up to six lags of each dependent variable in each equation relating to cars, but only five 

in those regarding light trucks and vans, due to a smaller sample size. Providing that 

other parameters on lagged variables are relatively small and not significant, the exact 

number of lags included in the GVAR model has little impact on the resulting predictions. 

Nevertheless, adding more than one-period lags impairs on the estimations’ precision, as 

will be argued in the next chapter. Once having explicitly accounted for the relationships 

among the three dependent variables, all the off-diagonal elements of the error variance- 

covariance matrix become unsignificant.

Detailed comparisons of predictions obtained from the diverse model types are 

provided in the following section.

5.4. Prediction results

In this section, we comment on the predictions resulting from the application of 

the Bayesian methodology outlined in Chapter 4 to the estimation of the simultaneous
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equations models described in the preceding sections. By default, the reported 

predictions come out of the Bayesian estimation of the selected model, i.e. GVAR(1). 

Tables C.4 and C.5 of Appendix C provide the completed (with predicted values) time 

series for variables relating to cars and light trucks/vans, respectively. The shaded area 

corresponds to the prediction period, while the remaining entries relate to estimates 

derived from survey data. Recall that survey-based estimates were previously submitted 

to the series of adjustments, described in Chapter 3, aiming at improving their 

compatibility. Predictions are reported together with a 95% confidence interval to 

evaluate their relative precision.

Graphical comparisons of predictions obtained from the various models types 

considered in Chapter 4 are also provided, and the supportive argumentation of 

methodology developed. Apart for the PVAR model, which only involves lagged 

dependent variables, and the URF formulation, which does not account for per capita 

registrations, all model specifications include the same exogenous variables as the 

GVAR, i.e. those described in Section 5.2. That way, prediction results are easier to 

compare and contrast. See Appendix C for figures and tables pertaining to the prediction 

results. Note that all figures appearing in Appendix C are conceived in such a way as to 

reflect the discrepancies in predictions of different model types, if any. The number of 

lags of the dependent variables appearing in autoregressive models is selected in 

accordance with the argumentation developed in the preceding section.

Two different methods of estimation were used for each type of model. While only 

the results of the Bayesian application are reported, a degenerated method11 was also

11 The degenerated method involves estimating, for each stage of the iterative process 
constituting the sampling method, the parameters of the model by using standard 
econometric methods instead of the Bayesian estimators. Its name refers to the fact that, 
assuming natural conjugate priors in the simple linear regession framework, standard 
estimators result from imposing degenerated values to the prior distribution parameters. 
While it has no specific theoretical basis, it is known to produce “good” results in practice.
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considered for validation purposes. Whenever the two estimation methods yielded 

similar predictions,12 the results were considered valid. When they did not, further 

investigation was required. Section 2.5.2 has provided regularity conditions under which 

different MCMC algorithms converge. In practice, these might be difficult to verify. We 

will return to this issue in the next chapter. For the moment, all estimations and 

predictions were derived from the application of the appropriate sampling-based 

algorithm, iterated N=5000 times, and computed using results from the last 4000 

iterations following the burn-in period (n=1000) to reduce the effect of the choice of the 

starting values.

5.4.1. Equations for the average number of vehicles

Figures C.1 and C.2 illustrate, respectively, predictions of the average number of 

cars and light trucks/vans derived from the estimation of the various types of models 

considered in Chapter 4. Since the series to be completed show a relatively stable 

growth rate, predictions increase monotonically throughout the prediction period. The 

amplitude of seasonal fluctuations varies more with respect to vehicle type, especially 

during the NaPVUS period. The number of light trucks and vans grew at a faster rate 

than the car stock during the target period. This observation is based in large part on the 

inclusion of minivans in the light trucks category.

Figure C.1 shows that predictions of the number of cars change very little from 

one model to the next, despite their different specifications and prior assumptions. This 

observation upgrades our confidence in the robustness of the results. The main 

discrepancies arise from the URF, whose almost flat predictions do not seem to mimic

12 In some cases, although estimates of the model parameters differ considerably depending 
on the estimation method, predictions calculated with these methods are very similar. We 
must therefore conclude that there is an adjustment feature in the overall estimates that 
causes the methods to produce convergent results, in terms of predictions.
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correctly the seasonal fluctuations observed in the remaining of the survey-based data. 

Accounting for serial correlation within the series under study yields more regular 

seasonal variations through the prediction spell. Allowing for the inclusion of stochastic 

independent variables within the VAR model specification, in addition to the lagged 

dependent variable structure, provides a way of capturing macroeconomic fluctuations 

as well. Finally, estimating the system as a whole, instead of equation by equation, 

slightly increases the predicted number of cars for the intermediary period, between the 

two surveys. This is consistent with the expected positive effect of distance travelled on 

car ownership. Therefore, predictions for the cars stock equation seem reliable, although 

its specification will be further questioned in the next chapter.

The analysis is very different for the light trucks and vans series. As illustrated in 

figure C.2, the estimated number of light trucks and vans varies considerably from model 

to model. Although to a lesser degree, this finding can easily be generalized to all the 

variables requiring predictions: since the prediction period is longer, and the estimation 

basis shorter, for light truck/van variables than for car variables, the latter are likely to be 

predicted with more accuracy. In addition, because estimates of car variables are based 

on larger samples, they form relatively more stable aggregate series than the light 

truck/van estimates. As a possible consequence, the cars stock estimates also fluctuate 

more regularly from quarter to quarter than their counterpart.

The average number of light trucks and vans has increased dramatically during 

the prediction period. Seasonal variations in the estimated number of light trucks and 

vans are also more accentuated during the NaPVUS’ sampling period than in the PCS’, 

thus compounding the difficulty of predicting the series during the intervening period. 

These observations can be explained, in part, by the recent increased popularity of 

minivans and sports utility vehicles which are used more intensively in arid seasons with 

rigorous climates.
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Firstly, considering the single equation estimation results shows that introducing 

lagged dependent variables as regressors, or assuming that the error terms follow an 

AR(4) process, considerably modifies the path of the predicted values. Note that the 

alternative ways of incorporating some dynamics in the linear regression framework have 

opposite effects on predictions, especially at the end of the prediction period. Surely, 

accounting for serial correlation is crucial, but also tricky, in this case.

Secondly, a comparison of predictions with the remainder of the series reveals 

that a model solely based on past experience, such as the PVAR model, is likely to 

understate the average number of light trucks and vans, especially at the end of the 

prediction period, indeed, the huge gap between the last predicted value and the first 

observation from the NaPVUS is very unlikely. This observation holds no matter how 

many lags of the dependent variables are included in the model formulation. Indeed, 

predictions of the PVAR(p) model increase when p gets larger. The tendency of PVAR 

models to underestimate dependent variables at the end of prediction intervals has 

already been outlined in the interpretation of Monte Carlo experiment results. Note that 

the predictions resulting from the linear regression model with AR(4) errors display a 

likewise, but even more important, gap at the moment they join end the NaPVUS data.

Predictions of the other types of simultaneous equations models (the URF, SUR 

and GVAR(1)) agree much more easily. The GVAR(1) predictions are slightly larger than 

those of the SUR and URF. This is consistent with the estimated positive and significant 

effect from the stock in the previous quarter, and with the acknowledged fact that North 

American countries approach car saturation. The increasing rate of stock accumulation 

observed at the beginning of the prediction period in three completed series can be 

justified by a larger representativeness of the light trucks and vans in the overall vehicle 

fleet starting in the late 1980’s. As will be shown in Chapter 6, the SUR and the GVAR(1) 

models are the main competitors in the search for the best prediction model type.
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The importance of obtaining reliable predictions of the private-use vehicle stock 

series cannot be overstated. Because it is the only total quantity variable in the 

simultaneous equations model, the predictions of other variables indicating overall use of 

private vehicles, such as the total distance and fuel consumption, are dependent on it. 

Developing a reliable profile of private vehicle use is contingent on accurate predictions 

of the number of vehicles. For this reason, the next chapter will focus on the testing of 

the model formulation for the average number of vehicles.

5.4.2. Equations for the average distance travelled per vehicle

Figures C.3 and C.4 compare predictions of the average distance, based on the 

estimation of different model types for cars and light trucks/vans, respectively. Once 

again, the URF predictions distinguish themselves by displaying less intense seasonal 

fluctuations. Otherwise, the predictions evolve in the same way as the remainder of the 

series, following the same slightly upward trend and comparable seasonal variations. 

Since the average distance predictions change little from model to model, they appear to 

be relatively robust.

Figure C.5 contrasts predictions of average distance travelled by vehicle type. On 

average, light trucks and vans cover longer distances than cars. Both upwards and 

upwards variations in average kilometres driven by quarter appear more pronounced for 

light trucks and vans than for cars.

5.4.3. Weighted fuel consumption rate equations

As shown in figures C.6 and C.7, the weighted fuel efficiency predictions for cars 

and light trucks/vans, respectively, vary little among the different model types we 

estimated. Now, the main difference is observed from the PVAR(p) predictions for light 

trucks and vans, which are higher than those derived from other models. Although only
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the results of the PVAR(6) estimation are drawn, predictions from more restricted lag 

structures were even higher.

In spite of that, predictions of all models follow the same decreasing trend as the 

remaining estimated series. In general, seasonal variations in the survey data are also 

passed along to the prediction period. Since predictions change very few according to 

the hypothesized model type and underlying priors used to obtain them, we are relatively 

confident in their robustness.

Weighted fuel consumption rates of cars and light trucks/vans are compared in 

Figures C.8. As expected, cars are more efficient than light trucks and vans. 

Furthermore, the gap between the two series is relatively stable, although it seems 

slightly wider at the beginning of the period. The data reflect manufacturers’ serious 

efforts to bring about a continuous improvement in light vehicles’ fuel efficiency and the 

progressive disappearance of large cars from our roads. Both curves follow a similar 

path, with variations of about the same amplitude, indicating that seasonal variations in 

fuel efficiency are satisfactorily factored into the prediction models.
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Reliability and Robustness of the Results
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Chapter 5 and the supporting Appendix C have shown that predictions do not 

vary that much with respect to the postulated model and the applied sampling-based 

estimation techniques. The equation for the average number of light trucks and vans is 

one exception. The irregularity of the series and its accelerating trend and seasonal 

fluctuations in the mid 1990’s impair on its completion. We have already provided some 

explanations, but would like to pursue this further.

The present chapter looks at estimation results in more depth, and from a 

different perspective. We first propose a more effective way to discriminate among 

different model formulations according to their ability to predict actual numbers on small 

intervals surrounding the prediction spell. A comparison of the estimation results is 

established in order to determine the best prediction model. That choice being made, we 

discuss the reliability and robustness of the results with respect to the underlying 

estimation method and prior assumptions.

Section 6.1 proposes a statistical criterion to compare the prediction power of 

competing model specifications. According to this criterion, the best model form and 

model specification are determined in Sections 6.2 and 6.4, respectively. Special 

attention is devoted to the light trucks and vans stock equation. Since the model 

ultimately selected involves lagged dependent variables, other statistical criteria are 

used, in Section 6.3, to determine the exact number of such variables that should be 

included in its formulation. Robustness checks are then applied on the selected model. 

Convergence of the MCMC iterative process is assessed in Section 6.5. Section 6.6 

checks the sensitivity of the Bayesian estimates with respect to the prior choice.

6.1. Evaluating prediction performance

Different model formulations and applications of MCMC estimation techniques 

can lead to discrepancies in the resulting predictions of the variables of interest. Notably,
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the estimates of the average number of light trucks and vans are highly sensitive to the 

postulated econometric model. We need a way to determine which prediction model is 

preferred. We focus on the light trucks and vans stock equation to perform this exercise 

because it provides the most discordant results.

We could develop a series of diagnostic tests to compare the different model 

specifications. In our Bayesian framework, these would rely on posterior odds ratio 

(POR). POR tests (Jeffreys, 1961) involve taking a decision based on the ratio of 

posterior probabilities associated with each alternative. The latter can be further 

decomposed as the product of prior probabilities assigned to each alternative times the 

expected value of the likelihood function, given that the parameter vector takes on values 

that are consistent with the corresponding hypothesis. The ratio of the expected 

likelihoods is defined as the Bayes factor (BF), a statistics which depends on the priors 

only through their effect in determining the posterior distributions.

Whenever underlying integrals have no close form solutions, the POR has to be 

calculated using numerical integration. Both Gelfand et al. (1990) and Carlin and Poison 

(1991) suggest a testing procedure for models whose parameters are computed via the 

Gibbs sampler. However, the method can be very time consuming as it involves 

replicating the Gibbs sampling process several times to evaluate the expected value of 

the likelihood function associated with each hypothesis under test. Furthermore, it 

requires that the normalizing constants (which make each posterior density proper, i.e. 

integrate to unity) be evaluated for the POR ratio to make sense. Remember that 

knowledge of the normalizing constant is unnecessary for estimation purpose. Hence, 

additional series of Monte Carlo experiments would be required to determine both proper 

densities entering each POR.

Mainly for reasons of computational convenience, we adopt a different strategy. 

Recall that the primary interest is to obtain good predictions for the transport aggregates,
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and not necessarily to estimate a structural model based on such variables. It thus 

seems natural to focus on the predictions rather than on parameter estimates. Provided 

that values of the dependent variables are observed within the limits of the two surveys 

sampling periods only, there are no benchmarks to which predictions can be directly 

confronted. A natural way to circumvent this problem is to check how each prediction 

model performs in areas, surrounding the prediction spell, for which survey information is 

available. In other words, we ask how each model would succeed at predicting transport 

aggregates if one of the surveys’ sampling periods was shorter, or the interval between 

them was longer. This is a useful way to determine how each model fits the data within 

the interval delimited by the two surveys.

A statistical criterion to compare prediction performances of competing models on 

such enlarged intervals still needs to be selected. Just as for the specification tests 

described above, the comparison could be based on POR tests. Indeed, the expected 

likelihood of the observed values of the dependent variable can be computed and 

compared across different model settings, assigning equal priors to each alternative. 

Once again, the normalizing constants would need to be evaluated first. We adopted a 

more standard and less time consuming approach. It consists in comparing the root 

mean squared errors (RMSEs)1 of predictions with respect to real values of transport 

aggregates. Since the reference (the observed value) is the same for each alternative 

specification, any number of models can be compared that way. Among others, 

Litterman (1986) and Kadiyala and Karlsson (1993, 1997) use the RMSE criterion to 

compare prediction performances of alternative models.

The RMSE is an average measure of the discrepancies between predictions and real values. 
It is calculated as the root of the sum of the squared discrepancies calculated for each 
omitted survey observation, divided by the number of such observations.
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The two following sections consider the RMSE criterion in order to determine the 

best model form and model specification for prediction purposes. In both cases, we 

consider three different scenarios. These consist in removing observations either at the 

end of the PCS sampling period, at the beginning of the NaPVUS sampling period, or 

both. Those observations are treated as the remainder of missing data and predicted in 

the same way. The RMSEs are calculated based on an entirely new set of Bayesian 

estimates since the MCMC algorithms have to be reran each time to achieve data 

completion. Successively from one up to eight observations are omitted from the sample 

basis in each scenario. Note that the NaPVUS only provides eight quarterly data for each 

dependent variable, so the last case is equivalent to using only the PCS information for 

prediction purposes.

6.2. Model selection

Tables D.1-D.3 of Appendix D show the RMSEs resulting from the removal of 

observations from the sampling basis of the PCS, the NaPVUS and both surveys, 

respectively. First note that the NaPVUS data are much harder to predict than the PCS 

observations. This was to be expected since the former are higher and more volatile than 

the latter. Generally speaking, system estimation outperforms single equation estimation, 

except for the linear regression model involving autocorrelated error terms which yields 

good results when sample information is removed simultaneously from both surveys.

It is hard to say more by looking at these tables in isolation. Ordering models in 

ascending order of RMSEs provides clearer conclusions. Table D.4 highlights the fact 

that the generalized vector autoregressive (GVAR) model is the best predictor of FCS 

data. Whenever observations are removed at the beginning of the NaPVUS sample, 

however, the SUR model outperforms the GVAR model, as illustrated in Table D.5. The 

results are even more mixed when observations are omitted at both ends of the
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prediction basis, as shown in Table D.6. In that case, the linear regression model with 

AR(4) errors becomes the best prediction model. The GVAR or the SUR model only 

comes on the second rank, depending on the number of additional observations for 

which predictions are required.

For each type of model, we have also graphed the predictions obtained once 

sample information is partially neglected, and contrasted them with the original 

predictions exploiting all available empirical information. Appendix D provides selected 

figures to support the following argument. We found that increasing the bounds of the 

prediction period mainly affects predictions resulting from the linear regression model 

including an explicit autocorrelation structure for the error terms, as expected from the 

underlying dynamics. Figure D.1 shows the extent of variability in predictions resulting 

from that model estimation when more and more observations are dropped from the 

NaPVUS. Predictions fluctuate even more whenever part of the FCS sample information 

is omitted, as shown in Figure D.2. Even the omission of a single observation results in 

large discrepancies in predictions obtained via this model, depending on which survey 

sample it is withdrawn from, as illustrated in Figure D.3.

Comparatively, predictions obtained by estimating other model types are much 

more stable, and diverge from the original predictions only when the number of omitted 

observations becomes relatively large. The precision of predictions also decreases with 

the number of lags of the dependent variables included in VAR types of models when the 

number of missing data is pushed to extreme values. This is why Figure D.4 relates to 

predictions of the GVAR(1) model, involving only one-period lagged dependent 

variables. This figure sketches typical results from the estimation of GVAR(p) models of 

any order p. Predictions diverge substantially only at extremely large numbers of omitted 

observations from the estimation basis. Otherwise, they are relatively stable. The same
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observations hold for the SUR model. In this sense, the two simultaneous equations 

models yield more reliable and robust results than single equation models.

The PVAR model which yields good results in some cases is in fact unstable, as 

expected from the results of the Monte Carlo experiments performed in Section 5.1 of 

Chapter 5. It leads to large fluctuations and general under-estimation, especially for the 

NaPVUS data. We conclude that it is important to use the stochastic explanatory 

variables, in addition to the autoregressive structure, in the modelling process. Figure 

D.5 provides a typical comparison of the three competing models’ predictions. Note that 

predictions of the GVAR(1) model follow more closely those of the SUR model, while 

those of the linear regression model with AR(4) error terms are generally lower and more 

disperse.

Both the SUR and GVAR formulations provide stable results, except when the 

number of omitted observations and/or dependent variables lags is increased to rather 

large values. Furthermore, predictions resulting from these models follow relatively 

similar trends. Recall that estimation results displayed in Section 5.3 of Chapter 5 

confirm the importance of including at least one-period lagged dependent variables into 

the model structure. Therefore, we continue to prefer the GVAR model to the SUR model 

for prediction purposes. It remains to choose the exact number of lags of the dependent 

variables to be included in the model specification, however. The next section proposes 

a simple statistical method to determine that number.

6.3. Selecting the autoregressive order in models involving lagged dependent 

variables

As argued in Section 5.4 of Chapter 5, predictions are relatively invariant to the 

number of lags, p, of the dependent variables included in the GVAR(p) model 

specification. Except for first own lags, estimated coefficients of these variables are
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generally small and unsignificant. Still, in some cases, RMSEs’ ordering changes with 

the inclusion of more lagged dependent variables in the GVAR model specification, as 

shown in the preceding section. The choice of the appropriate order, p, of a GVAR(p) 

formulation thus remains a crucial issue for prediction accuracy.

Bayesian estimation of VAR models out predicts longer lag lengths better than 

unrestricted (OLS) estimation methods. Provided that we are dealing with quarterly data, 

considering at least four lags is advisable. In PVAR settings using seasonal data (see, 

for instance, Litterman, 1986; Kadiyala and Karlsson, 1993, 1997), up to six lags are 

considered. In the GVAR modelling framework, the reduced sample size limits this 

number to five for light trucks and vans.

Two reasons motivate the issue of choosing p carefully. First, Monte Carlo 

experiments performed in Section 5.1 of Chapter 5 have shown how difficult it was to 

estimate small effects accurately, and how this impairs on the predictions’ precision. 

Second, models involving long lag length structures are more likely to suffer from 

multicollinearity among their regressors. Collinearity, or multicollinearity, arises when 

there are quasi-perfect linear relationships among some regressors. In this case, it 

becomes difficult to estimate individual model parameters accurately and inference is 

mitigated by their large variance estimates. Learner (1978) however outlines that despite 

problems inherent to the interpretation of results about single parameters, linear 

combinations of coefficients may be estimated quite accurately even in the presence of 

severe multicollinearity. Since the main interest of the present study lies in the prediction 

of the dependent variables (which is actually a linear combination of the model 

parameters) rather than on the estimation of individual parameters of the system, 

multicollinearity is not as serious a concern as the first point raised above.

Here also, posterior odds ratio tests (POR), or the associated Bayes factor (BF) 

statistical tools, could help in determining the appropriate model formulation. We adopt a
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shortcut suggested by Schwartz (1978) to alleviate the computational burden. Schartz 

proposed the Bayesian Information Criterion (BIG) to compare two nested models in 

order to determine the right dimension of a model specification. He showed that the 

change in the BIC provides a rough approximation to -2  log(BF) which improves as the 

sample size, N, gets large. The BIC is defined as:

A BIG=LR - (pa-pO log(N) 

where A stands for the change in the statistical measure, LR is the standard likelihood 

ratio statistics for the test, and pi represents the number of parameters in model i, for 

i=1,2, and p2>Pi-

The A BIC thus provides some evidence of the odds in favour of the unrestricted 

model 2 over the restricted model 1 based solely on empirical evidence. Note that this 

measure is independent of the prior choice, and that it penalizes models with numerous 

parameters by a factor proportional to the logarithm of the sample size. Another 

commonly used criterion in standard econometrics is the well known Akaike Information 

Criterion (AIC) defined as:

A AIC = LR -  2 (p2-pi).

This statistical measure also favours parsimonious specifications, but to a lesser extent 

than the BIC, given that it does not explicitly account for the sample size in its penalty 

term.

We use these two criteria in order to determine the appropriate number of lagged 

dependent variables to include in the GVAR specifications. Specifically, we compare 

models involving p and p+1 lags, varying the value of p from 1 to 6 for cars, and 1 to 5 

for light trucks and vans. Since we are conditioning on the first p observations, we use 

the same number of observations in the estimation of each of the two models to be
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compared, i.e. N=T-(p+1). That way, the comparison is fairer and does not favours 

models estimated on the basis of larger samples right from the start.

Results from such comparisons are displayed in Tables D.7 and D.8 for models 

pertaining to cars and light trucks/vans variables, respectively. A negative change in one 

of the criterion value indicates that it is not beneficial to add up one more lag to the 

model formulation. In other words, the loss in the degrees of freedom in doing so 

exceeds the gain in the likelihood improvement. Providing that stochastic and 

deterministic exogenous explanatory variables are also included in the both model 

specifications, the inclusion of a single lag of each dependent variable is globally 

sufficient. This is consistent with the fact that, among all coefficients associated with 

lagged dependent variables, only those on first own lags are significant in the GVAR(p) 

estimates, even for p>1.

The advantage of using parsimonious specifications is even more important than 

it appears at first glance. Since we condition on the first p observations of the sample in 

estimating a model with p lags, considering longer lag length structures further reduces 

the number of degrees of freedom. This feature is particularly important in our practical 

application which is based on relatively small samples. Now that the general modelling 

framework has been established, we turn to the selection of the exogenous variables 

that should be included in the GVAR(1) specifications for each vehicle type.

6.4. Selecting model specification

Primary selection of the explanatory variables set was based on the predictive 

power of the model within the limits of available sample information. That is, OLS 

regressions were performed on the stacked observations from both surveys and fitted to 

exogenous time series reduced in the same manner. Independent variables that were 

found to have explanatory power were kept for further investigations. The selected model
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specifications for each equation have already been described in Section 5.2 of Chapter 

5.

In most cases, the model specification does not affect the prediction results since 

the PVAR formulation yields comparable predictions. Once again, the average number of 

light trucks and vans constitutes the exception. For that equation, we considered several 

alternative specifications in order to determine the best prediction model. Section 5.2 

provided a list of the independent variables whose prediction power has been tested in 

the stock equation.

A first selection of the most promising candidates was based on the statistical 

significance of each variable, this time based on Bayesian estimates. This left us with 

three model specifications which give relatively different predictions: a basic specification 

(variation 1), preliminarily selected by performing classical statistical tests based on the 

reduced-stacked samples, a smaller version (variation 2) of the former involving only 

statistically significant variables (at conventional levels) from a Bayesian viewpoint, and a 

completely different model specification (variation 3) involving income and prices in each 

equation (as in Dahl (1986) and Dahl and Sterner (1991)).

The exogenous explanatory variables included in each model formulation are 

listed in Table D.9 of Appendix D. Note that the table also comprises a fourth variation 

involving quarterly figures of national income and unleaded fuel prices. Although the 

estimation of variation 4 in the framework of a simple linear regression model appeared 

to yield good results, it leaded to too high predictions, especially at the beginning of the 

prediction spell. This is shown in Figure D.6 which compares the predictions obtained for 

each model formulation.

Moreover, the fact that we were unable to estimate a SUR model involving these 

two variables in each equation indicates that they are highly correlated. This explains 

why Figure D.6 contrasts predictions based on the simple linear regression model,
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instead of a less restricted formulation. We faced the same multicollinearity problem with 

all specifications including one of the two measures of income and fuel prices. 

Accordingly, we did not proceed to further tests using such formulations. We finally 

adopted a fallback solution which consists in using the quarterly consumer price index of 

composite goods (QIPC) as a proxi for fuel prices. This variables appears in variation 3.

Again, we appeal to the RMSE criterion to discriminate among the remaining 

three formulations. Tables D.10-D.12 show the consequences of omitting observations 

from the sampling basis of the FCS, the NaPVUS and both surveys, respectively. Only 

RMSEs pertaining to the estimation of the GVAR(1) model are reported in the tables 

because this model has already been shown to yield the most accurate predictions. 

However, we made that kind of comparisons based on all model types and obtained 

similar results conclusions. In all cases, variation 2 outperforms the alternative 

specifications in terms of the precision of resulting predictions.

In particular, private registrations and vehicle prices form a better set of predictors 

of the private-use vehicle stock than income and fuel prices, which is different than Dahl 

and Sterner. While both appear to be unsignificant, seasonal fluctuations are better 

captured by a set of seasonal dummy variables than by temperature in the stock 

equation. Results for the selected specifications are reported in Sections 5.3 and 5.4 of 

Chapter 5. Discussions in the preceding sections of the present chapter also relate to 

this model specification.

Model specifications for other equations were selected in a similar fashion, based 

on Bayesian estimates. Section 5.3 has also given a list of the explanatory variables that 

were tested in each alternative formulation. As different specifications lead to very similar 

results, in terms of predictions, we do not go through the RMSE comparison stage for 

other equations. Instead, generalizing the conclusions of the previous investigation, we 

adopted parsimonious specifications for these equations as well.
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The two following sections analyze the estimation results for the selected model 

from a different perspective. Namely, they address the reliability and stability issues first, 

by asking if the estimation process converged, and then by questioning the pertinence of 

the hypotheses underlying the estimation and prediction technique, that is the prior 

choice.

6.5. Convergence

Geweke (1995) gives sufficient conditions for convergence of the Gibbs sampler. 

Although these were shown to hold for some of the basic estimation techniques used in 

the present analysis, this is not necessarily the case for more general MCMC iterative 

methods involving a data augmentation stage. Providing a rigorous mathematical proof 

that these conditions hold in our most general setting falls behind the scope of this 

thesis. Nevertheless, some experimental checks are performed on the MCMC draws in 

order to assess convergence issues.

Firstly, graphs of parameter values calculated at each iteration indicate that these 

seem to stabilize relatively rapidly. The same holds for the augmented values of the 

three dependent variables. Secondly, increasing both the total number of iterations 

performed (from 5000 to 10000) and the burn-in period (from 1000 to 5000) has little 

effect on the estimation and prediction results, apart from improving their precision. 

Finally, the choice of the parameter starting values has no impact on the results either. 

For instance, we reran the Gibbs sampling algorithms setting y=0 and £=I as initial 

values for the GVAR model parameters and found very similar results. These all tend to 

indicate that convergence is achieved relatively quickly.

Assuming that convergence occurred, what remains to be checked about our 

estimation results are the sensitivities to the underlying assumptions. These are 

summarized in the prior beliefs.
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6.6. Robustness to the prior choice

Prior beliefs also have a potential impact on the estimation results. In most of our 

applications, however, varying the whole prior distribution had minor effect on 

predictions. Once again, estimation processes attempting to predict the average number 

of light trucks and vans are the most sensitive to the underlying prior assumptions. For 

that equation, at least, further investigation is required.

The fact that the SUR and the GVAR models yield relatively close predictions and 

similar trends is reassuring. Indeed, Bayesian estimation of the SUR and GVAR models 

relies on distinct prior distribution assumptions. This gives credibility to the more general 

prior hypothesized for the GVAR model. To dig further into this issue, we would have to 

either vary the prior hyper-parameters of the selected GVAR model or, more generally, 

consider a completely different prior distribution and see how these changes affect the 

resulting predictions.

From a theoretical standpoint, the Normal-Diffuse prior introduced by Zellner 

(1971) to estimate the PVAR model is one of the most general. Unlike the widely used 

Minnesota prior of Litterman (1980), it allows for dependencies between equations 

without imposing a rigid structure on the parameter set as in the Normal-Wishart prior, 

for instance. According to Kadiyala and Karlsson (1993, 1997), it is also preferable in 

practice because it gives rise to better forecasts. Features of the chosen prior have been 

described in more detail in Section 4.3.2 of Chapter 4.

Another possible prior choice, which shares the same desirable properties, would 

be the extended natural conjugate (ENC) prior introduced by Dreze and Morales (1976). 

As general as the Normal-Diffuse prior, the ENC prior however suffers from several 

practical disadvantages. Although both priors lead to posterior distributions whose 

moments have no analytical closed form solutions and, hence, must be evaluated
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numerically, applications involving the ENC prior are particularly arduous. They both 

require the assumption of prior independence between equations to yield tractable 

posterior distributions and the specification of the prior degrees of freedom to insure that 

the posterior moments exist. Calculation of the ENC posterior via the Gibbs sampler can 

be very time consuming, especially for large models. Furthermore, the estimation results 

are difficult to interpret because of the reparameterization of the system. For all these 

reasons, estimation using the ENC prior has not been attempted.

The hyper-parameters have been set to orders of magnitude frequently 

encountered in the literature. They are close to the values that Litterman (1986) and 

Doan and al. (1984) found to work well for the Minnesota prior. In order to parameterize 

their priors, Kadiyala and Karlsson conduct a series of experiments in which part of the 

data is set aside for calibration, and the models are fitted to the remainder of the sample. 

Hyper-parameters are set to values minimizing the mean squared error forecasts based 

on the former sample. The remainder of the data is used for further investigations on 

estimation and forecasting performance. We cannot consider a similar approach to prior 

parameterization given that we need to use the whole, already modest, sample to 

achieve our prediction goal. To the best of our knowledge, all empirical applications of 

Bayesian VAR estimation techniques use hyper-parameters of the same order of 

magnitude as those postulated in the present study.

Kadiyala and Karlsson’s experiments have shown that posterior distributions 

induced by the Normal-diffuse and ENC priors are more sensitive to the choice of the 

scale factor on the variance of own lags, ku than that of other dependent variables’ lags, 

je2 (7t3, the hyper-parameter of the variance of exogenous explanatory variables, was kept 

constant to a large value, reflecting prior ignorance about coefficients associated with 

these variables). A relevant sensitivity analysis would thus begin by varying the value of 

tci, keeping both n2 and n3 fixed, to see how it impacts on predictions. Furthermore, our
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estimation results show that, among the whole lag structure, only parameters on first 

own-lags are significant. Others are small and not significant at conventional levels. 

Since determines the precision of parameters on own lags, while n2 relates to cross 

effects, only changes in the value of 7̂  have a potential impact on prediction results.

We have performed a series of experiments varying values of xci within a range of

0.05 (relatively precise prior variance) to 100 (more uncertain prior variance). As shown 

in Figure D.7, predictions of the average number of light trucks and vans obtained from 

the estimation of the GVAR(1) model do not vary much, as a result of these changes. 

The effect on predictions of the average distance and weighted fuel consumption rates 

for the same vehicle type is even weaker. We conclude that the predictions are relatively 

insensitive to our prior choice.

This chapter has compared all results produced in the scope of this study under 

several aspects in order to determine the econometric model yielding the most reliable, 

precise and accurate predictions of the three interest variables. The different 

comparisons and sensitivity analyses operated in this chapter indicate that our 

generalized version of Kadiyala and Karlsson’s treatment for the VAR model with 

Normal-diffuse prior performs well in the present framework. The GVAR model allows 

encompassing the interrelationships among the three transport aggregate series as well 

as their recursive structure, in addition to exogenous economic factors. It yields 

reasonable, stable and relatively precise predictions. Furthermore, the estimation 

process happens to converge and to be relatively insensitive to the underlying 

assumptions and starting conditions.
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The main achievement of this study was to propose a practical, flexible and 

tractable econometric method for obtaining complete time series estimates from 

intermittent surveys. In this framework, the Bayesian approach is an advantageous 

alternative to classical econometric methods. Specifically, sampling-based techniques 

can be implemented, in collaboration with data augmentation, in order to estimate an 

econometric model for the survey-based variables and obtain predictions for their 

missing values, respectively. Such methods were applied to two Canadian surveys, the 

FCS and the NaPVUS, to predict transport aggregates in the private transport sector 

over the six-year period separating them. These exclusive sources of longitudinal 

information on the use of the private vehicles in Canada are crucial for prediction 

purpose, policy analysis, and air pollution measurement.

We were fortunate to have the first access to the newly released NaPVUS data 

and to acknowledge the fact that differences with the FCS cause huge discrepancies in 

estimates from both surveys. One important contribution of the present analysis was to 

propose adjustment techniques aimed at reducing such discrepancies. By accounting for 

distinctions in the surveys’ sampling methodologies and compensating for differences in 

the data collection process, we produced more compatible estimates. Quarterly 

estimates of the three energy components, the average number of vehicles, the average 

distance travelled by each vehicle, and their weighted fuel consumption rates, were 

derived this way for cars, on one hand, and for light trucks and vans, on the other.

For each type of vehicles, an aggregate simultaneous equations model 

encompassing the three variables of interest was formulated. Since survey-based data 

were not available for the intermediary period, between the FCS and the NaPVUS, the 

model specification had to rely on explanatory variables drawn from external sources of 

information. A dynamic structure was incorporated into the model to capture the trends 

and seasonal variations in the quarterly time series. Potential relationships among the
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vehicle ownership, characteristics and use decisions were also taken into account. Since 

the primary interest of this empirical analysis laid in predictions, an unrestricted reduced 

form of the system was considered for estimation.

In order to bridge the gap between the two surveys, sampling-based techniques 

were generalized to include a data augmentation stage. The estimation process 

improved efficiency by making use of all available empirical information, while explicitly 

accounting for the presence of missing values in the dependent variables series. In 

accordance with the data augmentation principle, the missing data were considered as 

additional parameters that needed to be estimated. Therefore, predictions for the middle- 

spell variables were derived as any other Bayesian parameter estimates, endogenously 

and consistently with the econometric model.

We first estimated each equation separately, considering various specifications of 

the simple linear regression model, to examine trends and seasonal fluctuations in each 

series, and determine potential predictors. We also allowed for some dynamics in the 

single equation settings by including lagged dependent variables as regressors and 

autocorrelated error terms. To account for inter-relationships, as well as underlying 

dynamics, among the three dependent variables, simultaneous equations estimation was 

undertaken. In turn, we estimated seemingly unrelated regression (SUR) models and 

pure vector autoregressive (PVAR) formulations. By generalizing the Gibbs sampling 

algorithms used to estimate the two preceding models, we were able to consider a more 

general setting involving both models’ features. The generalized vector autoregressive 

(GVAR) model allows for the inclusion of stochastic explanatory variables, in addition to 

deterministic variables and lags of each dependent variable, in each equation 

specification. It also accounts for possible asymmetry across the system equations.

We compared estimation and prediction results obtained for each of these model 

types, under alternative model specifications. Similar results were obtained in most
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cases, except for one of the stock equations. Precisely, predictions of the average 

number of light trucks and vans turned out to be highly sensitive to the hypothesized 

model formulation and the corresponding Bayesian estimation process. Given the 

irregularities showing in the observed series, this was to expect. Arguments were 

provided to support the fact that these were mainly caused by the recent keen interest in 

minivans and sports utility vehicles. The light trucks and vans stock equation was thus 

submitted to further tests.

A criterion was suggested to discriminate among the different model formulations 

and estimation techniques in order to determine the best prediction model. We argued 

that extrapolating predictions from both sample sides was a good way to determine how 

each model fitted the data and performed at completing the series. The root mean 

squared errors (RMSEs) of predictions obtained on small intervals surrounding the 

prediction period, for which data are observed, was adopted for a comparative analysis. 

To compute the RMSEs, each estimation process was reran and the whole series of 

predictions were recomputed for the enlarged missing-value zone. Within the limits of 

each survey’s sampling period, we increased the number of missing data from one up to 

eight observations, acknowledging that the latter case is rather extreme, especially for 

the NaPVUS.

As expected, RMSEs’ comparisons revealed that the more volatile NaPVUS data 

were harder to predict. The RMSE criterion allowed us to determine, in turn, the model 

type, and the model specification, that yielded the most precise and accurate predictions. 

Our findings indicated the importance of accounting for the relationships among vehicle 

ownership, characteristics and use decisions. Indeed, simultaneous equations modelling 

generally yielded more accurate predictions than single equation estimation. In 

particular, the SUR and the GVAR model specifications appeared to generate the best 

predictions, according to the RMSE criterion. Since the estimation results also showed
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the importance of accounting for serial correlation in the dependent variables series, we 

selected the GVAR model for prediction purposes.

Given the relatively small sample sizes involved in our applications, the Akaike 

and Schwartz’ Bayesian information criteria favour a formulation of the GVAR involving 

only one-period lagged dependent variables, as opposed to more extended lag 

structures, for both vehicle types. Based on the RMSE criterion, a parsimonious 

specification involving only statistically significant stochastic exogenous variables, in 

addition to deterministic variables and first-order lags, was retained for each equation. 

This model was shown to yield the most precise and accurate predictions.

Some sensitivity analyses were performed on the selected model in order to test 

its reliability and robustness. Convergence issues were assessed by varying the 

parameter starting values as well as the number of burn-in and overall iterations 

performed in the Gibbs sampling algorithm. The estimation results turned out to be 

insensitive to these modifications. Moreover, plots of the Monte Carlo Markov Chain 

draws generated this way indicated that convergence is achieved relatively fast. We also 

varied some prior parameters of the GVAR model in order to check their impact on 

predictions. Overall, the results appeared to be relatively insensitive to the prior 

assumptions, indicating that priors do not dominate empirical information.

This study has succeeded in improving the general understanding of the private 

transport sector by providing Natural Resources Canada, and other governmental 

instances such as Environment Canada, with more accurate data on transport 

aggregates. These will be used for policy analysis, prediction purposes and eventually 

also to control air pollution. The precious sources of information provided by the two 

national surveys on the use of private vehicles could be further exploited to produce
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complete time series on other relevant variables. More disaggregated levels of the three 

transport aggregates are also achievable.1

The Bayesian approach, particularly its sampling-based techniques, has a 

promising future in practical applications such as this one. According to the evolving 

public interests, fluctuating government budget constraints and the increasing costs 

incumbent to undertaking surveys, more empirical information is likely to be collected on 

an intermittent basis, in the future. Data augmentation proved to be a powerful and 

tractable tool to generate complete time series in this framework, even when the 

proportion of missing information is relatively large, compared to the overall sample size.

The iterative algorithm developed in the context of our analysis to estimate a 

GVAR model appears to be privileged, at least for prediction purposes. Further 

investigation would be required to evaluate its performance in estimating individual 

structural parameters. With this respect, more general simultaneous equations models 

involving current-period dependent variables as regressors could also be formulated. 

Following Kadiyala and Karlsson (1996), other sets of priors could be considered in the 

GVAR framework as well. Nonlinear models could also be considered with additional 

computational difficulties. An interesting extension of the method would consider a model 

involving only survey-based data, and hence contemporaneous missing information on 

both sides of the equations.

The estimation and prediction techniques developed in the framework of this 

practical application can be seen as general solutions to the problem of missing 

information. They can be applied to analyze and complete other types of datasets 

involving missing data. In particular, they can be used to impute values to unobserved 

items in order to correct for the non-response or attrition bias in disaggregate cross-

In the context of this empirical study, estimates by vehicle age category were also produced.
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sectional surveys or panel data. Of course, they can also be employed to complete any 

other type of macroeconomic time series. Finally, they could also be generalized to 

analyze latent variables in discrete choice models.
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This appendix completes the information provided in Chapter 3 on survey-based 

data. We first present tables comparing the sample sizes of both surveys, on a quarterly 

basis. The adjustment process applied to the survey-based estimates is then described 

in further detail, when necessary.1 Since accurate NaPVUS estimates are required for 

adjusting PCS estimates, the former are considered first.

A.1. Comparison of sample sizes

Table A.1 gives total sample sizes for each quarter of the PCS. In some quarters, 

only cars were sampled. Note that since the samples were drawn from registration files, 

the vehicle type of selected vehicles is always determined, so that the total of sampled 

cars and light trucks and vans perfectly corresponds to the total number of sampled 

vehicles.

Global sample sizes for each quarter of the NaPVUS are given in Table A.2. 

Since there were two parts to the survey, there has been double-sampling. The number 

of households sampled to answer the first stage telephone interview is reported in the 

third column. From that sample, a sub-sample of households having a private-use 

vehicle at their disposal was drawn to fill out the fuel purchase diary in the survey second 

stage. The numbers of selected vehicles sampled for that purpose are reported in 

subsequent columns. Note that because of some non-responses to the question 

regarding the type of the selected vehicle, the total number of selected vehicles may 

exceed the sum of sampled cars and light trucks and vans.

For an extensive treatment of the adjustment process and its impact on raw survey-based 
estimates, refer to Boucher (2000). In the latter report, the estimates are further 
disaggregated by vehicle age category for each vehicle type.
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Table A.1: Total sample sizes for each quarter of the FCS

Year Quarter Cars Light trucks/vans Total

1979 4 1 517 n. s. 1 517
1980 1 1 492 n. s. 1 492
1980 2 1 693 n. s. 1 693
1980 3 1 741 n. s. 1 741
1980 4 1 923 n. s. 1 923
1981 1 2 052 n. s. 2 052
1981 2 1 932 n. s. 1 932
1981 3 1 279 n. s. 1 279
1981 4 1 801 919 2 720
1982 1 1 798 714 2 512
1982 2 1 911 1 217 3 128
1982 3 2 004 1 322 3 326
1982 4 1 933 1 220 3153
1983 1 2 000 1 276 3 276
1983 2 1 786 1 024 2 810
1983 3 2 024 1 380 3 404
1983 4 2 163 1 494 3 657
1984 1 2 121 1 487 3 608
1984 2 2 140 1 511 3 651
1984 3 2 041 1 372 3 413
1984 4 2 048 1 463 3 511
1985 1 2 031 1 446 3 477
1985 2 2 049 1 361 3 410
1985 3 1 896 1 331 3 227
1985 4 1 995 1 397 3 392
1986 1 603 449 1 052
1986 2 603 412 1 015
1986 3 589 433 1 022
1986 4 599 410 1 009
1987 1 621 438 1 059
1987 2 589 393 982
1987 3 585 399 984
1987 4 564 401 965
1988 1 579 n. s. 579
1988 2 533 n. s. 533
1988 3 474 n. s. 474
1988 4 562 n. s. 562

Means of sample sizes 1 467 1 011* 2 551*
n. s.: this particular class of vehicles was not sampled during the corresponding quarter
*: means of sample sizes are calculated on the basis of quarters during which both classes of 
vehicles were sampled only.
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Table A.2: Total sample sizes for each quarter of t he NaPVUS
Year Quarter Households Cars L igh t trucks/vans Vehicles*

1994 4 5124 1 210 497 1 707
1995 1 2 823 748 321 1 069
1995 2 2 768 687 271 960
1995 3 2 761 679 269 949
1995 4 2 797 734 341 1 078
1996 1 3 157 857 355 1 213
1996 2 3 080 861 368 1 230
1996 3 3 062 852 333 1 185
Means of sample sizes 3 197 829 344 1 174
*: the total number of sampled vehicles may not be equal to the sum of sampled cars and light 
trucks and vans because of non-responses regarding the vehicle type.

A.2 Adjustment to NaPVUS estimates

i) Adjustment for the non-response to certain questions

In this section, we explain the adjustment method used to bring the sum of 

estimates disaggregated by vehicle type into line with the total estimate. Note that this 

kind of adjustment is required for the NaPVUS estimates because information on some 

of the segmentation variables is missing. Note also that this type of adjustment is 

applicable to all estimates from which the variables of interest are deduced: total number 

of vehicles, total distance travelled, and total fuel consumption.

The adjustment is made to estimates by vehicle type in order to factor in vehicles 

of unspecified type. Thus, if TOTAL refers to the total estimate for all vehicles, and CAR 

and TRUCK denote the estimates for cars and light trucks/vans respectively, then the 

difference between TOTAL and SUM=CAR+TRUCK is distributed so as to reflect the 

initial distribution of vehicles by type on the basis of observations for vehicles of specified 

type. The estimates for cars will therefore be increased by a proportion PC=GAR/SUM of 

the difference DIFF=TOTAL-SUM, while the residual portion of the difference, Pt=1- 

Pc=TRUCK/SUM, will be added to the estimates for light trucks and vans.
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We will thus obtain adjusted estimates by vehicle type the sum of which will equal 

the total estimate for all vehicles:

(CAR + Pc x DIFF) + (TRUCK + P,x DIFF) = (CAR + TRUCK) + (Pc x DIFF + P,x DIFF)

= SUM + (Pc + Pt) x DIFF 

= SUM + [PC + (1-Pc) ]x  DIFF 

= SUM + DIFF 

= SUM + (TOTAL - SUM)

= TOTAL.

The NaPVUS estimates used in calculating the proportions in the following 

section underwent a similar prior adjustment. Note that the adjustments presented in the 

current section are applicable only to total quantities. Average quantities are then 

recalculated using the adjusted total quantities.

ii) Vehicles used primarily for commercial purposes

Figure A.1 provides a typical illustration of the empirical distribution of the 

percentage of commercial use of vehicles from the NaPVUS that are sometimes used for 

commercial purposes. The typical distribution has three modes around 10, 50, and 80 or

90 percent, respectively, depending on the quarter. A conservative criterion has been

chosen to discriminate among vehicles according to their primary use: vehicles that are 

used at least 75 percent of the time for commercial purposes have been assigned to 

commercial vehicles.

A threshold of at least 50 percent was desired in order to keep as many vehicles 

as possible in the estimation basis. Furthermore, respondents whose selected vehicle 

was lent by their employer could have the incentive to overstate the percentage in which 

this vehicle was used for commercial purposes. Since the 50 percent level corresponds 

to a peak of the distribution, it was not an appropriate threshold. It would have been
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difficult to motivate assigning the exact 50 percent of commercial use to either of the 

private or commercial vehicle classes. The fact that there are typically only a few 

vehicles involving between 50 and 75 percent of commercial use motivated the choice of 

75 percentage points as a threshold.

Figure A.1: Empirical distribution of the 
percentage of vehicle commercial use
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Source : NaPVUS data for the fourth quarter of 1994.
Note: This is not a weighted distribution.

A.3 Adjustments to FCS estimates

In this section, we present the main points of the adjustments made to the FCS 

estimates so that they would be comparable to the NaPVUS estimates. Only total 

estimates of number of vehicles, distance and fuel consumption are considered here. We 

then use the adjusted figures to generate estimates of average distance and weighted 

fuel consumption rate, since these too are of significant interest to us in the context of 

this study.
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i) Adjustment for vehicles excluded from the sampling field

The first adjustment, for vehicle categories that were excluded from the 

registration files of certain provinces for some quarters, is based on Statistics Canada 

estimates and has been explained in detail in section 3.6.1 of Chapter 3. A list of the 

unsurveyed categories is presented in Table A.3.

Table A.3: Categories of vehicles excluded from provincial registration files at the 
moment of the FCS sampling_______________________________________________

NWF QUE ONT ALB BC

Year-
quarter

Cars Light
trucks
/vans

Cars Light
trucks
/vans

Cars Light
trucks
/vans

Cars Light
trucks
/vans

Cars Light
trucks
/vans

79-4 T

80-1 L T

80-2 L

81-4 L L L L L L

82-1 L L T L L

82-2 L L

82-4 L L L L

83-1 L L

83-2 L L T T

85-1 L L

85-2 L L
Legend : T : the totality of vehicles were absent from the registration files for the corresponding 

province and quarter.
L : only late model vehicles are missing from the registration files for the 

corresponding province and quarter.

Subsequent adjustments are based on the assumption that the vehicle 

distribution remained basically the same throughout the period delimited by the two 

surveys. The assumption may not be realistic, but in our view it is better to make the
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adjustments and thus make the estimates for the two surveys comparable rather than 

using just the raw estimates from the surveys.

Indeed, NaPVUS is the only available source of information that can give us an 

idea of the type of adjustments to the FCS estimates required in order to factor in the 

exclusion of certain vehicle categories from that survey. Furthermore, changes in vehicle 

distribution probably result in inverse moves in correction terms. More specifically, for the 

next two types of adjustments based on the NaPVUS distribution, variations in vehicle 

distribution over the last twenty years probably moved in opposite directions.

Vehicles that were not driven during the survey month were probably more 

numerous in the eighties than during the NaPVUS survey period. Therefore, a NaPVUS- 

based adjustment to factor in the exclusion of vehicles not driven during the FCS survey 

month will generate an underestimation of the number of non-driven vehicles. Indeed, 

the use of vehicles for private purposes has increased in recent years, compared with 

the eighties. Furthermore, given the economic and demographic trends, the number of 

new vehicles purchased or leased on a long term basis has increased over the same 

period.2 As a result, the adjustment for new vehicles on the basis of the proportion of 

such vehicles in the NaPVUS may well overestimate the number of new vehicles in the 

FCS.

By way of illustration, we have distributed the NaPVUS vehicles as shown in 

Table A.4. Portion (1) is the number of privately owned or leased NaPVUS vehicles that 

are used primarily for private purposes, were driven during the survey month, and are 

not new. The definition of a new vehicle (current or following year vehicle) may change 

here, depending on the FCS quarter for which the adjustment is required (see Section 

3.6.3 of Chapter 3): Portion (1) does not include the NaPVUS vehicles that are not

2 See Boucher (1998b) for a justification of the two last assertions.
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represented in registration files for the corresponding FCS survey quarter. Therefore, in 

their turn, the subsequent adjustments add portions (2) and (3) to the FCS estimates.

Table A.4: Distribution of the NaPVUS vehicles for the FCS adjustments

Portion (1) Portion (2) Portion (3) Portion (4)

FCS vehicles covered 

by the first adjustment

Non-driven

vehicles

New

vehicles

Vehicles used primarily, but not 

solely, for commercial purposes

Recall that the proportions represented by each of the above portion in the 

NaPVUS are based on two quarters. Since the NaPVUS was conducted for two full 

years, the proportion for a specific quarter is based on NaPVUS observations for the two 

corresponding quarters. We were thus able to generate quarterly adjustments based on 

as many observations as possible and thereby make the results more significant. Note 

that, prior to such a calculation, we made an adjustment similar to those described in 

section 3.5.2 of Chapter 3 in order to factor in the missing values for the NaPVUS 

variables needed to calculate the proportions.

Total estimates by vehicle type are adjusted using the corresponding NaPVUS 

proportions. In other words, the FCS-based estimates are increased by the proportion of 

the corresponding category in the NaPVUS. Consistency is ensured by the fact that 

proportions by type are calculated in relation to the grand total, including non-driven 

vehicles. Here is a detailed description of the adjustment process, step by step.

it) Adjustment for unused vehicles

The purpose of the second adjustment is to factor in the exclusion from the FCS 

of vehicles that were not driven during the survey month. Only estimates of the total 

number of vehicles are adjusted, because distance and fuel consumption for those 

vehicles show nil values. Thus the proportion of non-driven vehicles in NaPVUS is
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determined by calculating the ratio of portion (1) to the total of portions (1) and (2). A 

quarterly proportion of non-driven vehicles can thus be obtained for each vehicle type 

(PROPND).

In order to clarify the linkages in the adjustment process, we will use FCS', for

j= 1 .....4, to denote the FCS estimates by vehicle type derived from the j,h adjustment.

Thus the second adjustment applies to estimates resulting from the first StatCan 

adjustment-based, i.e. to FCS1, and it will generate adjusted estimates, FCS2. Estimates 

by vehicle type are increased by a PROPND proportion of the adjusted total, FCS2 :

FCS2 =FCS1 +(pROPNDxFCS2).

The adjusted estimates are thus obtained with the formula :

FCS2 FCSl
1 - PROPND‘

Adjusted estimates resulting from the second adjustment equal the sum of portions (1) 

and (2) in Table A.4. •

Hi) Adjustment for new vehicles

The purpose of the third adjustment is to add new vehicle categories that were 

not surveyed in the FCS. The categories undergoing this adjustment vary, depending on 

the FCS quarter under consideration (see section 3.6.3). A correction is made to all three 

variables: number of vehicles, distance travelled, and fuel consumption. The proportion 

of the value of one of these variables to be assigned to new vehicles, PROPN, for a 

given vehicle type is calculated on the basis of the NaPVUS observations for the 

corresponding quarters by dividing portion (3), which represents the total quantity of the 

variable to be assigned to new vehicles excluded from the FCS for the corresponding 

quarter, by the sum of the same variable for portions (1), (2) and (3).
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To adjust an estimate of a variable, FCS2, resulting from the second adjustment 

for a given vehicle type, we add to it the missing portion for new vehicles. As in the 

preceding correction, the adjusted estimate takes the form:

FCS3 =FCS2 + (pRORNxFCS3), 

and it can be calculated using the formula :

FCS =3  FCS2
1-PROPN

The last attempt to retrieve the remaining primarily commercial-use vehicles 

(portion (4)) from the resulting estimates was unsuccessful, for reasons explained in 

section 3.6.4.
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This appendix presents the simulation results discussed in Section 5.1 of Chapter 

5. The data generating process (DGP) for each series of Monte Carlo experiments is first 

described. Then, simulation results are tabulated and compared with real (assumed) 

parameter values appearing in the headline of each table. Graphs of predictions and 

illustrations of their dispersion and accuracy are also provided to evaluate the prediction 

performance of each type of model. We start by considering single equation estimation 

and then turn to the estimation of systems of simultaneous equations. In all cases, the 

appropriate sampling-based technique is applied to obtain the estimates and predictions. 

The starting values and prior assumptions are those described in Chapter 4, where the 

Bayesian approach is introduced.

1. First simulation: Simple linear regression (LIN) model

DGP: Y=p0+PiX+u, where u~N (0 ,0%-) with xt~NID(4,2), for t=1 ,...,100. 

Table B.1: Simulation results for the simple linear regression model
Nu. of missing 
observations

Prediction
interval

Po=1.000 p^O.300 =0.200

0 —
0.874

(0.169)
0.331

(0.038)
0.246

(0.032)

10 [46,55] 0.858
(0.187)

0.341
(0.045)

0.257
(0.036)

20 [41,60] 0.915
(0.209)

0.327
(0.050)

0.234
(0-037)

30 [36,65] 0.880
(0 .220 )

0.338
(0.052)

0.251
(0.041)

40 [31,70] 0.735
(0.224)

0.363
(0.051)

0.235
(0.050)

50 [26,75] 0.764
(0 .211 )

0.348
(0.051)

0.244
(0.049)

60 [21,80] 0.795
(0.240)

0.336
(0.054)

0.274
(0.055)

70 [16,85] 1.023
(0.366)

0.281
(0.078)

0.279
(0.078)

80 [11,90] 0.901
(0.394)

0.303
(0.091)

0.329
(0.164)

90 [6,95] 0.815
(0.579)

0.310
(0.143)

0.600
(0.280)

Legend: Numbers in parentheses correspond to standard errors on the parameter estimates.
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Figure B.1: Predictions of the simple linear 
regression model based on simulated data
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2. Second simulation: Linear regression model involving a four-period lagged 
dependent variable (PLAG(4)) as regressor

DGP: yt=j3o+ayt-4+ut, where u,~N (O.c^Ij), for t=1 ,...,100.

Note: We start from y0=0 and skip 300 turns before keeping the simulated data.

Table B.2: Simulation results for the linear regression model including a four-
period lagged dependent variable as regressor

Nu. of missing 
observations

Prediction
interval

Po=1 oc=0.3 o2=0.2

0.949 0.335 0.226u (0.138) (0.090) (0.039)

10 [46,55] 0.928
(0-164)

0.356
(0.117)

0.237
(0.047)

20 [41,60] 0.936
(0.165)

0.349
(0.119)

0.243
(0.045)

30 [36,65] 0.902
(0.181)

0.370
(0.132)

0.246
(0.047)

40 [31,70] 0.822
(0.216)

0.416
(0.152)

0.243
(0.055)

50 [26,75] 0.839
(0.246)

0.387
(0.162)

0.255
(0.062)

60 [21,80] 0.875
(0.234)

0.383
(0.151)

0.264
(0.073)

70 [16,85] 0.838
(0.322)

0.408
(0 .200 )

0.269
(0.078)

80 [11,90] 0.920
(0.346)

0.391
(0.226)

0.393
(0 .202 )

90 [6,95] 1.232
(0.517)

0.168
(0.297)

1.617 
(1.872)

Legend: Numbers in parentheses correspond to standard errors on the parameter estimates.
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Figure B.4: Predictions of the linear regression model 
involving a four-period lagged dependent variable based on

simulated data
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3. Third simulation: Linear regression model with AR(4) errors

DGP: yt=Po+PiXt+et, where eF^eH+^et-s+ctaet-s+^eM+Ut, with Ut-NIDfO.o2) and 

xt~NID(4,2), fort=1,...,100.

Note: We start from e0=e1=e2=e3=0, and skip 300 turns before keeping the simulated 

data.

Table B.3: Simulation results for the inear regression model wit h AR(4) errors
Nu. of 

miss. obs.
Pred.

interval
Po=1.0 Pi=0.3 <^=-0.4 <|>2=-0.2 (j>3=-0.1 <(>4=0.5 c?=0.2

0 ---- 0.963
(0 .110)

0.305
(0.025)

-0.458
(0-099)

-0.099
(0-125)

-0.017
(0.115)

0.526
(0.080)

0.255
(0.045)

10 [46,55] 0.977
(0 .122)

0.300
(0.029)

-0.515
(0.118)

-0.127
(0.118)

-0.023
(0.150)

0.466
(0 .101)

0.310
(0.053)

20 [41,60] 1.081
(0.194)

0.281
(0.048)

-0.537
(0.107)

-0.151
(0.128)

-0.028
(0.136)

0.441
(0.091)

0.339
(0.070)

30 [36,65] 0.994
(0.173)

0.300
(0-043)

-0.488
(0.132)

-0.126
(0.131)

-0.039
(0.160)

0.454
(0 .122)

0.348
(0 .101)

40 [31,70] 1.014
(0.214)

0.304
(0.048)

-0.470
(0.139)

-0.135
(0.178)

-0.058
(0.179)

0.445
(0.130)

0.358
(0.092)

50 [26,75] 1.111
(0.224)

0.281
(0.058)

-0.462
(0.159)

-0.128
(0 .122)

-0.062
(0.151)

0.430
(0.154)

0.416
(0 .102 )

60 [21,80] 1.053
(0.286)

0.289
(0.075)

-0.429
(0.135)

-0.103
(0.143)

-0.070
(0.186)

0.414
(0.156)

0.514
(0.131)

70 [16,85] 1.042
(0.406)

0.296
(0.103)

-0.419
(0.141)

-0.105
(0.193)

-0.110
(0.204)

0.342
(0.173)

0.635
(0.164)

80 [11,90] 0.598
(0-515)

0.408
(0.124)

-0.385
(0 .221 )

0.217
(0.294)

0.074
(0.244)

0.240
(0.203)

0.780
(0.247)

90 [6,95] 0.943
(0.611)

0.290
(0.203)

-0.294
(0.270)

0.076
(0.304)

-0.161
(0.309)

-0.051
(0.316)

1.726
(0.769)

Legend: Numbers in parentheses correspond to standard errors on the parameter estimates.
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Figure B.7: Predictions of the linear regression 
model with AR(4) errors based on simulated data
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4. Fourth simulation: Seemingly unrelated regression (SUR) model

DGP: yit=0io+0nXit+£it

y2t=02o+02i Xa+Ea

where x1t~NID(4,2) and Xa~NID(3,1.5) are not correlated, and e,~NlD(0,I), for 

t=1,...100 .

Table B.4: Simulation results for the seemingly unrelated equations model
Nu. of 
miss. obs.

0io=1.O 6n=0.3 020=2.0 021=0.5 £n=0.2 £ 12=0 .0 £22=0 .4

0 0.903
(0.128)

0.331
(0.030)

1.924
(0.204)

0.542
(0.063)

0.214
(0.028)

0.005
(0.041)

0.498
(0.069)

10 0.905
(0.173)

0.330
(0.040)

1.900
(0.156)

0.552
(0.049)

0.210
(0.031)

-0.006
(0.035)

0.468
(0.085)

20 0.812
(0.168)

0.346
(0.040)

2.008
(0.197)

0.523
(0.065)

0.209
(0.037)

-0 .002
(0.044)

0.493
(0.073)

30 0.871
(0.175)

0.329
(0.039)

1.944
(0.161)

0.513
(0.051)

0.184
(0.041)

-0.015
(0.035)

0.432
(0.087)

40 0.966
(0.175)

0.304
(0.043)

1.855
(0.223)

0.518
(0.063)

0.186
(0.043)

-0.008
(0-041)

0.392
(0.070)

50 0.880
(0.172)

0.323
(0.041)

1.855
(0.194)

0.515
(0.063)

0.185
(0.031)

-0.005
(0.038)

0.401
(0.105)

60 0.935
(0.264)

0.314
(0.056)

1.845
(0.280)

0.542
(0.087)

0.206
(0.047)

-7x1 O'5 
(0.043)

0.418
(0.085)

70 1.124
(0.233)

0.265
(0.055)

1.797
(0.403)

0.567
(0.124)

0.206
(0.051)

0.024
(0.059)

0.498
(0.123)

80 1.151
(0.428)

0.253
(0.096)

1.763
(0.428)

0.580
(0.125)

0.277
(0.149)

0.003
(0 .101)

0.595
(0.245)

90 0.767
(0.457)

0.369
(0.118)

1.765
(0.642)

0.560
(0.243)

0.355
(0.172)

-0.004
(0.230)

0.683
(0.876)

Legend: Numbers in parentheses correspond to standard errors on the parameter estimates.
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Figure B.10: Predictions of Y1 from the
estimation of a SUR model based on

simulated data
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Figure B.13: Comparison of predictions of Y2 
from the estimation of a SUR model based on 

simulated data on the [31,70] interval
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Figure B.14: Prediction errors on Y1 
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based on simulated data
 10 obs.
 20 obs.
 30 obs.

 40 obs.
 50 obs.
_ . —  60 obs.
 70 obs.
 80 obs.
 90 obs.

Figure B.15: Prediction errors on Y2 
from the estimation of a SUR model 

based on simulated data

2

1

0

1

■2
(O Is- 00 O) o

-1 0obs. 
20 obs.

■ 30 obs. 
40 obs.

■ 50 obs.
■ 60 obs. 
- 70 obs. 
-80 obs. 
-90 obs.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



www.manaraa.com

1 6 5

5. Fifth simulation: Pure vector autoregressive model of order 1 (PVAR(1))

DGP: yif=eio+q>uyit-i+<pi2y»-i+eit

y2t=02o+<P2iy 1 t-i +922ya-i+®2ti where 6t=[6 -it @2t]~NID(0 ,2 ), for t=1 ,...,100.

Note: We start from y10=y20=o, and skip 300 turns before keeping the simulated data.

Table B.5: Simulation results for the pure vector autoregressive model of order 1
Missing
obs.

0 10 20 30 40 50 60 70 80 90

o b 1.087
(0.300)

1.122
(0.322)

1.069
(0.331)

0.977
(0.314)

0.947
(0.274)

0.885
(0.427)

0.956
(0.368)

0.998
(0.557)

0.900
(0.796)

-0.116
(21.527)

(pn=0.5 0.619
(0.073)

0.619
(0.079)

0.635
(0.079)

0.658
(0.068)

0.666
(0.062)

0.699
(0 .100)

0.688
(0.091)

0.677
(0.123)

0.724
(0.151)

0.733
(0.132)

(Pi2=0.4 0.193
(0.044)

0.172
(0.045)

0.169
(0.050)

0.166
(0.050)

0.159
(0.047)

0.118
(0.040)

0.106
(0.044)

0.098
(0.053)

0.070
(0.055)

0.019
(0.075)

020=3.0 2.035
(0.323)

2.009
(0.434)

1.900
(0.429)

1.896
(0.350)

1.822
(0.475)

1.752
(0.560)

1.473
(0.585)

1.193
(0.504)

1.055
(0.465)

1.078
(4.650)

q>2i=-0.5 -0.277
(0.077)

-0.256
(0.095)

-0.248
(0.079)

-0.240
(0.077)

-0.232
(0.087)

-0.169
(0.098)

-0.126
(0.113)

-0.101
(0.090)

-0.064
(0.086)

-0.007
(0.056)

(p22=0.7 0.674
(0.063)

0.657
(0.086)

0.682
(0.067)

0.671
(0.082)

0.684
(0.108)

0.620
(0.133)

0.687
(0.115)

0.753
(0 .110)

0.772
(0.099)

0.743
(0.129)

Eii=0.2 0.225
(0.036)

0.252
(0.042)

0.259
(0.046)

0.255
(0.070)

0.282
(0.060)

0.320
(0.068)

0.253
(0.127)

0.333
(0.124)

26.000
(46.476)

3942.577 
(7x104)

Zi2=0.0 -0.013
(0.041)

0.002
(0.047)

-0.004
(0.050)

0.026
(0.061)

0.033
(0.071)

0.092
(0.086)

0.012
(0 .112)

-0.017
(0.116)

2.559
(3.940)

-676.994
(1x104)

222=0.4 0.508
(0.099)

0.533
(0.082)

0.571
(0.114)

0.621
(0 .110)

0.672
(0.127)

0.862
(0.239)

0.683
(0.160)

0.783
(0 .2 22 )

54.755
(53.324)

145.631 
(2 x103)

Legend:N umbers in parentheses correspond to standard errors on the parameter estimates.
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Figure B.16: Predictions of Y1 from the 
estimation of a PVAR(1) model based on 

simulated data
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Figure B.17: Predictions of Y2 from the 
estimation of a PVAR(1) model based on 

simulated data
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Figure B.18: Comparison of predictions of Y1 
from the estimation of a PVAR(1) model based 

on simulated data on the [26,75] interval
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Figure B.19: Comparison of predictions of Y2
from the estimation of a PVAR(1) model based

on simulated data on the [26,75] interval
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Figure B.21: Prediction errors on Y2 
from the estimation of a PVAR(1) model 

based on simulated data
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Figure B.20: Prediction errors on Y1 
from the estimation of a PVAR(1) model 

based on simulated data
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6. Sixth simulation: Generalized vector autoregressive model of order 1 
(GVAR(1))

DGP: yit=Aio+A1iX1t+Ai2yit-i+A13y2t-i+Uit

y 2 t= A 2 0 + A 2 iX 2 t+ A 2 2 y it-1 + A 2 3 y 2 t-1 + U 2 t

where e,~NID(0,E), T=100, and x1t~NID(4,2) and X2t~NID(3 ,1 .5 ) are not correlated. 

Note: We start from y10=y20=0, and skip 300 turns before keeping the simulated data.

Table B.6: Simulation results for the generalized vector autoregressive model of
order 1

Missing
obs.

0 10 20 30 40 50 60 70 80 90

A-io=1.0 0.822
(0.356)

0.890
(0.463)

0.817
(0.531)

0.545
(0.394)

0.620
(0.626)

0.415 
JO.742)

0.623
(0.669)

0.878
(0.777)

0.526
(1.048)

0.842
(6.244)

A„=0.2 0.197
(0.031)

0.178
(0.038)

0.197
(0.043)

0.200
(0.034)

0.179
(0.049)

0.183
(0.039)

0.167
(0.050)

0.198
(0.085)

0.217
(0.107)

0.138 
(1.473)

A-t 2=0.5 0.632
(0.058)

0.644
(0-071)

0.651
(0.080)

0.691
(0.055)

0.699
(0.093)

0.725
(0 .111)

0.733
(0.109)

0.680
(0.123)

0.710
(0.143)

0.711
(0.158)

A13=0.4 0.205
(0.035)

0.183
(0.034)

0.173
(0.050)

0.179
(0.064)

0.162
(0.048)

0.158
(0.056)

0.108
(0.051)

0.065
(0.057)

0.054
(0.063)

0.012
(0.077)

A2o=3.0 1.328
(0.393)

1.359
(0.434)

1.192
(0.569)

1.312
(0.584)

0.984
(0.476)

0.777
(0.591)

0.722
(0.654)

0.562
(0.675)

0.488
(0.669)

-0.687
(4.775)

A2i=0.3 0.327
(0.066)

0.334
(0.064)

0.318
(0.091)

0.315
(0.061)

0.309
(0.068)

0.336
(0.114)

0.317
(0.083)

0.265
(0.141)

0.201
(0.173)

0.446
(1.701)

A22=-0.5 -0.241
(0.069)

-0.243
(0.064)

-0.218
(0.082)

-0.206
(0.083)

-0.166
(0.065)

-0.105
(0.067)

-0.135
(0.084)

-0.094
(0.081)

-0.054
(0.088)

-0.004
(0.058)

A23=0.7 0.696
(0.058)

0.672
(0.064)

0.696
(0.083)

0.630
(0.099)

0.660
(0 .112)

0.578
(0 .120)

0.694
(0.097)

0.712
(0 .121)

0.705
(0.138)

0.683
(0.164)

Zi 1=0.2 0.238
(0.036)

0.260
(0.045)

0.270
(0.049)

0.253
(0.055)

0.282
(0.079)

0.306
(0.104)

1.170
(0.913)

0.344
(0 .100)

1.632
(1.256)

68.643
(221.075)

z 12=0.0 -0.032
(0.034)

-0.027
(0.037)

-0.022
(0.048)

-0.017
(0.046)

-0.046
(0.071)

-6x1 O'4 
(0.083)

-0.097
(0.092)

-0.049
(0 .102)

-0.359
(0.388)

-3.577
(22.650)

Z22=0.4 0.395
(0.062)

0.423
(0.059)

0.415
(0.077)

0.392
(0.083)

0.464
(0.113)

0.587
(0.149)

0.502
(0 .121 )

0.507
(0.286)

2.009
(1.769)

41.567
(158.344)

Legend: Numbers in parentheses correspond to standard errors on the parameter estimates.
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Figure B.22: Predictions of Y1 from the estimation
of a GVAR(1) model based on simulated data
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Figure B.23: Predictions of Y2 from the estimation 
of a GVAR(1) model based on simulated data

6

5

4

3

2

1

0
O O i B N l D l f i t C O W T -T - T - N t O ' J i n f f l N O O ) o

[46,55]
[41,60]

• [36,65]
[31,70] 
[26,75]
[21,80]
[16,85]
[11,90] 
[6,95]

- Real values

Figure B.24: Comparison of predictions of Y1 
from the estimation of a GVAR(1) model based 

on simulated data on the [26,75] interval
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Figure B.25: Comparison of predictions of Y2 
from the estimation of a GVAR(1) model based 

on simulated data on the [26,75] interval
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Figure B.26: Prediction errors on Y1 
from the estimation of a GVAR(1) model 

based on simulated data
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Figure B.27: Prediction errors on Y2 
from the estimation of a GVAR(1) model 

based on simulated data
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This appendix relates to the discussion of the empirical results proposed in 

Chapter 5. Firstly, we examine the sources and configuration of the independent 

variables appearing in the specifications described in Section 5.2 of Chapter 5. 

Secondly, we provide tables of estimation results for the selected model forms and 

specifications described in Section 5.3. Thirdly, series of tables and figures on prediction 

results are reported. These relate to the comparison of prediction results proposed in 

Section 5.4. By default, reported results correspond to those obtained by estimating the 

selected (GVAR(1)) model. However, some figures show comparisons with predictions 

obtained from alternative model types or specifications.

The registration data are drawn from the MVR.XLS file, which Natural Resources 

Canada (NRCan) kindly provided to us. However, the file had to be updated so as to 

include annual observations from 1995 on. The values produced by Statistics Canada 

from provincial registration files, as listed in its catalogues no. 53-219, are adjusted in the 

same way as in an earlier AMDC report (Boucher, 1998a) so as to exclude certain 

vehicle categories included in the registration registers of certain provinces.1 Specifically, 

buses were separated from passenger automobiles where they were included in that 

class, and in certain cases other categories of vehicles were added to the passenger 

automobile class.

According to our most recent observations, this class corresponds to light 

vehicles, including cars and light trucks and vans, that are used for private purposes. As 

a result, passenger automobile registrations (REGIST) can be used to model the 

variables related to cars as well as light trucks and vans because they cannot be 

disaggregated by these types of vehicles.

1 Note that the same types of adjustments were made for the additional 1995 and 1996 
observations taken from Statistics Canada’s catalogues.
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The population is estimated on the basis of LFS performed on a monthly basis. It 

is taken from the CANSIM disk databank, which gives annual average estimates of the 

population aged 16 years or more, i.e. of legal driving age. The number of passenger 

automobile registrations divided by these estimates gives an estimate of per capita 

registrations (PCREGIST).

The gross domestic product of the public transit sector (GDPPUBT), based on the 

factors of production costs, was also drawn from the CANSIM disk databank, where it 

took the form of quarterly reports expressed in constant 1986 dollars. As in the case of 

the other variables extracted from the CANSIM disk databank, the series comprised raw 

data that had not been seasonally adjusted. For our study, the purpose of which is 

precisely to capture seasonal variations along with trends in the series requiring 

prediction, seasonally adjusted data would have been of no interest.

The price of new vehicles (VPRICE) is a weighted average of prices for the main 

exporting countries. The weights correspond to each exporting country’s relative market 

share. The prices and relative shares for the exporting countries are drawn from the 

CANSIM disk databank. The series had to be deflated, because new vehicle prices are 

expressed in current dollars.

This was done using the monthly consumer price index (CPI) in 1986 dollars. The 

CPI series also comes from the CANSIM disk databank. The inflation adjustment 

process is always the same: a quantity expressed in current dollars is divided by the CPI, 

and the result is multiplied by 100. Since CPIs and new vehicle prices are surveyed on a 

monthly basis, the figures had to be aggregated to obtain quarterly averages.

Personal disposable income per capita (INCPC) is calculated using the annual 

gross domestic product, tax rates, and an estimate of the Canadian population. It is 

expressed in 1986 constant dollars and presented as an annual figure. The series is 

extracted from the CANSIM matrix of major indicators of the Canadian economy.
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The quarterly figures of national income (QNATINC) and unleaded fuel price 

(QUNLFP) also come from CANSIM. Both series are adjusted to account for the inflation 

by using a quarterly average of the monthly CPIs in 1986 dollars.

The series of Canadian average temperatures (TEMP), expressed in degree- 

days, was provided by Environment Canada. Quarterly averages were calculated for the 

series. As the series begins only in 1981, it was only applied to the light truck and van 

specifications.

Canadian interest rates on personal consumer loans (IRATES) are extracted from 

the CANSIM databank. The chartered banks’ interest rates on prime business loans 

come out of the Bank of Canada’s web site which might be found at the address 

www.bankofcanada.ca. The U.S. interest rates series was found on the Internet at the 

address TedBos@ UAB.edu, in the section "Economic Time Series, US Government, 

Federal Reserve, Board of Governors, Interest Rates.” The series in question is entitled 

"Bank prime loan rate”. All these series represent monthly averages and are expressed 

in nominal terms. They are aggregated on a quarterly basis using averages.

The on-road fuel consumption rates (FCR) come from the Desrosiers 

Automotives Consultants and were provided to us by NRCan. They are the annual series 

currently being used by NRCan in its energy demand prediction model (TEDM).

Net gasoline retail sales (FSALES) come from the CANSIM disk databank too. It 

is a monthly series expressed in cubic metres. First, the series is converted into litres 

using the rule 1 m3= 1000 litres. Second, the quarterly sum is calculated to bring it into 

line with the dependent variables.
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Table C.1: Parameter estimates of the generalized vector autoregressive model

Variable Vehicle stock (S) Average distance ( D ) Fuel efficiency (E)

Statistics Estim. Std.
err.

t-stat. Estim. Std.
err.

t-stat. Estim. Std.
err.

t-stat.

Constant -0.825 1.386 -0.595 0.177 1.567 0.113 -1.725 2.226 -0.775
REGIST 0.462 0.159 2.911 — — — — — —

PCREGIST — — 0.603 0.265 2.276 — — —

FCR — — — — — — 0.557 0.161 3.466
VPRICE -0.007 0.006 -1.211 — — — — — —

FALL 0.100 0.127 0.785 -1,197 0.120 -9.985 1.645 0.255 6.460
WIN 0.104 0.119 0.873 -1.199 0.097 -12.307 1.701 0.316 5.388
SPR 0.208 0.156 1.334 -0.452 0.131 -3.447 -0.471 0.322 -1.464
S.i 0.478 0.147 3.243 0.012 0.038 0.320 0.063 0.138 0.456
Z.1 -0.028 0.085 -0.330 0.290 0.131 2.206 0.037 0.185 0.201
E-i -0.002 0.036 -0.060 -0.014 0.017 -0.859 0.472 0.126 3.729

Table C.2: Parameter estimates of the generalized vector autoregressive model
with 1 lag of each variable in each equation relating to light trucks 
and vans

Variable Vehicle stock (S) Average distance ( D ) Fuel efficiencyf  (E)
Statistics Estim. Std. err. t-stat. Estim. Std. err. t-stat. Estim. Std. err. t-stat.
Constant -3.512 0.954 -3.681 -0.866 2.909 -0.298 -0.269 2.692 -0.100
REGIST 0.396 0.109 3.632 — — — — — —

PCREGIST — — — 0.775 0.556 1.394 — — —

FCR — — — — — — 0.731 0.230 3.180
VPRICE -0.010 0.005 -2.023 — — — — — —

FALL 0.158 0.087 1.809 -1.704 0.229 -7.435 1.803 0.416 4.339
WIN -0.065 0.076 -0.852 -1.598 0.115 -13.899 1.279 0.461 2.772
SPR 0.032 0.082 0.389 -0.879 0.167 -5.252 -0.955 0.573 -1.665
S.i 0.559 0.133 4.197 0.025 0.053 0.473 0.074 0.293 0.253
-̂1 0.002 0.044 0.056 0.339 0.185 1.836 -0.050 0.238 -0.211

E-1 0.003 0.012 0.232 0.008 0.017 0.484 0.450 0.145 3.107
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Table C.3: Parameter estimates of the error variance-covariance matrix for
__________  generalized vector autoregressive models or order 1______________
Variable Cars Light trucks and vans

Statistics
Parameter

estimates

Standard
error

Student
t-statistics

Parameter

estimates
Standard

error
Student

t-statistics

£11 0.065 0.017 3.846 0.023 0.011 2.002
£ 1 2 -0.009 0.009 -0.997 -0.006 0.011 -0.523
£ 1 3 0.041 0.026 1.563 -3x1 O'4 0.019 -0.017
£ 2 2 0.035 0.009 3.716 0.057 0.027 2.138
£ 2 3 -0.038 0.022 -1.741 -0.022 0.041 -0.535
£ 3 3 0.298 0.068 4.365 0.588 0.172 3.416
CPU time 8:58:06 3:02:31

Table C.4 : Predictions for variables relating to private-use cars

Year-qtr S: Average number of 
vehicles (units)

D : Average distance 
travelled (km)

E: Weighted fuel 
consumption rates 

(litres/100 km)
79t4 7 365 300 4 050 17.2
80t1 7 410 900 3 320 18.6
80t2 7 504 000 4 070 15.5
80t3 7 408 300 4 560 15.0
80t4 7 384 300 3 570 17.7
8111 7135 200 3 290 17.3
8112 7 529 800 4 160 15.0
8113 7 326 900 4 330 15.4
8114 7 626 800 3 440 16.3
82t1 7 537 700 3 170 17.6
82t2 7 228 800 4160 14.1
82t3 7 406 200 4 660 13.5
82t4 7 570 000 3 800 15.2
83t1 7 510 800 3 610 15.4
83t2 7 337 200 4130 13.7
83t3 7 281 900 4 690 13.2
83t4 7 203 700 3 730 14.4
84t1 7 432 700 3 440 15.3
84t2 7 299 300 4 080 13.3
84t3 7 612100 4 710 12.9
84t4 7 692 600 3 820 14.0
85t1 7 684 700 3 470 14.9
85t2 8 431 000 4150 13.5
85t3 7 821 600 4 580 12.0
85t4 7 880 000 3 810 13.8
86t1 8 176 600 3 310 14.3
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Year-qtr S: Average number of 
vehicles (units)

D : Average distance 
travelled (km)

E: Weighted fuel 
consumption rates 

(litres/100 km)
86t2 8128 100 4 170 12.1
86t3 7 988 200 4 790 12.3
86t4 7 828 900 4 050 13.2
87t1 8 386 300 3 750 13.1
87t2 8 542 000 4 310 11.3
87t3 8 212 800 5 090 11.4
87t4 7 996 800 3 850 12.7
88t1 8 578 300 3 930 13.0
88t2 8 701 900 4 130 11.7
88t3 8 384 600 5 190 10.9
88t4 8 703 200 3 920 12.5

83t1 8 789 200 
[8 251 6CC.3 328 700

3 720 
;3 360,4 0/0;

12.3 
:1? 3,13.9]

8912 8 988 400 
[8 *04 500,9 372 200]

4 400
i*3 970,4 8-30]

10.9
[9.6.12.2]

8813 8 816 400 
[8 212 500,9 420 3001

5 080 
[4 640.5 510]

10.5
[9.3,11.6]

89t4 8 836 700 
[8 128 400,9 544 900;

4 080 
[3 630,4 530]

11.9
,*10 8,13. i ;

9011 8 994 400 
[3 25* 400,9 784 4001

3 790 
io 32.0,4 2/0]

12.5
[11.4,13.6]

90t2 3 194 200 
[8 5 /9  700,9 808 800]

430 
[4 010,4 890]

10.6
[9.4,11.81

90t3 3 044 200 
.8 508 600,9 579 800!

5 120 
[4 700,5 540]

10.2
[9,0,11.4]

9014 Q 031 300 
'8 453 900,9 609 300!

4 130
;3 680,4 580',

- 11.6 - , 
[10-4,42.9]

9111 9 081 100 
r8 338 200,9 824 ICQ]

3 730 
[3 350,4 100]

. • - 12.2 /  
[11.0,13.5]

9112 S 232 900 
[8 484 600.9 981 100]

4 350 
[3 890,4 810]

10.3 ' 
[8.8,11.8]

9113 3 078 300
iH 284 500,9 872 200]

5010 
|4 620,5 3901'

g o
- . [8.7,11.2] ' -

9114 9 032 900 
[8 -52 600.9 7-3 2001

, 4010  
[3 560,4 450]

■■ 1 . ' 11.4 - 
[10.0,12.9]

92t1 . , * ■ 9170 900 ,
[S 520 100,9 821 600]

3 690 ' 
[3 200,4180]

12.0
[10.5,13.5]

92t2 9 340 100 
[8 596 200,10 084 000]

4 330 
[3 960,4 7101

» 1 10.1 
[8.5,11.7!

82=3 ■ • . 9202800
its 558 800,9 3^6 700]

5 000 
[4 560,5 440]

. . * 9.7 
• [8,1,11.3]

9214 ' -.9  208 600 
[8 590 100,9 827 000]

-  ■ 4000- 
[3 590,4 4201

• . • 11.2 
1' [9.8,12,5] -

9311 9 334 500 
[8 751 000,9 918 100]

3690  
[3 290,4 080]

: ’ - 11.8
...........[10.6,13.1] ■ I
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Year-qtr S: Average number of 
vehicles (units)

D : Average distance 
travelled (km)

E: Weighted fuel 
consumption rates 

(litres/100 km)

9312 9 625 600 "“ ■ -4 3 3 0 . 9.9
if> 745 700,10 30b 500] [3 950,4720] ' ............ [8.8,11.3],

S3C3 :J0380900 ' • 
;B 649 200,10 11? 700]

5000  
[4 630,5 380]

• . 9.6 ; ■ 
[8.4,10.7]

93t4 9413500 
{8 682 300,10 144 600]

4-000 
[3 550,4 460]

11.0
-. [9.9,12.2]

94;'.
9 583000 

[3 76', 600,'0 404 400]
- 3 6 9 0 '  
270.4 120]

11.7 - 
[10,4,13.0]

94\2 9 765 300 
:'9 115 600,10 416 100]

4340 . 
[3 780,4900]

9.8
[8.5,11.21

9413 S 590 300 
[8 383 900.10 196 600]

5010  
[4 510,5 500]

•'* ' ' 9.5
:............[8*2,10.7] '

94t4 9 483 900 3 970 10.6
95t1 9 220 300 3 760 10.8
95t2 10 097 600 4 100 10.1
95t3 9 772 000 5 410 9.7
95t4 9 520100 4 050 11.3
96t1 9 892 800 3 460 11.2
96t2 10 130 900 4 100 10.0
96t3 9 962 900 4 920 9.2

Legend: Numbers in the shaded area correspond to predictions, while other entries refer to 
adjusted survey-based estimates. In the shaded area, the second entry represents a 95% 
confidence interval on predictions. Numbers are rounded to meet Statistics Canada’s precision 
criteria. Precisely, estimates of the number of vehicles are rounded to the nearest hundred, the 
average distance estimates are rounded to the nearest ten and estimates of the average fuel 
consumption rate are rounded to the first decimal point.
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Table C.5: Predictions for variables relating to private-use light trucks and vans

v  S: Average number of 
Y@ar"qtr vehicles (units)

D : Average distance 
travelled (km)

E: Weighted fuel 
consumption rates 

(litres/100 km)
8114 1 448 100 3 810 21.2

82t1 1 392 700 3 380 23.4

82t2 1 407 600 4 340 19.6

82t3 1 435 900 5 020 18.8

82t4 1 599 000 3 920 20.7

83t1 1 560 700 3 660 21.1

83t2 1 577 500 4 060 18.5

83t3 1 422 700 5 150 18.5

83t4 1 530 100 3 580 20.2

84t1 1 452 400 3 530 20.6

84t2 1 460 100 4 080 17.9

84t3 1 454 700 4 840 17.5

84t4 1 581 100 4 100 19.3

85t1 1 691 000 3 560 19.6
85t2 1 756 100 4 310 16.7

85t3 1 689 100 5 020 16.7

85t4 1 739 600 3 720 18.9
86t1 1 839 800 3 620 18.4
86t2 1 879 700 4 230 16.8
86t3 1 899 700 5 480 16.2

86t4 1 845 400 3 880 19.1
87t1 1 884 100 3 730 17.1
87t2 1 909 300 4170 15.8
87t3 2 056 000 5 710 16.0

87t4 2 072 600 4 170 17.4
m t i  ' -2084600  '

. [1746400,2422 800]
- 3830  
[6 330,4330]

17.3
. . [15.7,19.0]

° 8:"  P 840 300,2 332 000] [3 800.5 0801
. - 15.1 

. [13.3,17.01

89t1 [2004 000,2 810 4001

5500

____

.?  8f - . ,[3 230,4 500]

15.0
[13.0,17.1]

16.8 
, ' [15.0,18.6] 

16.9
- 'H 5.6,18.1]
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Year-qtr S: Average number of 
vehicles (units)

D : Average distance 
travelled (km)

E: Weighted fuel 
consumption rates 

(litres/100 km)

8912 • • 2 565 200
\2 052 400,3 077 SCO]

4500
13890,5 3001.

' ‘ - 14.6 : ‘ 
. 112J6,16.61

89t3 2 549 430 
f2 075 800,3 023 000]

5570  -
, 14780,6 380}

. ‘ 14.6 
n 2.9,16.3]

89t4 * ■ 272660Q ‘
12 202 700,3 250 600!

' 4230  
13 330,5120]

16.3
[14.7,18.0]

sen
2 7 :0  300 

\2 253 300,3 “.37 200)
- , 3920 , 

13 05 0 / 770!
16.5 

V 144.7,16.3)

90t2 2 810 600
12 346 500,3 2 /4  700]

4550;. 
r4 000,5 1101

14.3
112.6,16.0]

9013
, 2 ^1 4  900 '• 

i2 423 6C0.3 205 100]
5600 ,

i5 000,6 2.00]
14.2 

' - 112.5,15.9]

90t4 2 933 1C0 
i2 560 300,3 305 9001

4 270 
13 500,5 040]

15.9 ''
114.1,17.8]

9111 ? 845 400
|? 437 300,3 252 600]

3 830
[3 080,4 580]

’ ■ 16.1 
114.4/7.8]

9112 2 916 800 
12 518 300,3 315 200]

4 400
13 680,5 120]

14.0
111.8,16.1]

9113 2 903 100 
[2 478 500,3 339 6G0)

5 480 
[4 750,6 160]

13.9
111.9,16.0]

9114 2 981 700 
[2 523 000,3 44 0 4001

4 100 
[3 540,4 660]

■ 15,7'' 
113.7.17.61

9211 2 936 40-0 
|2 491 000,3 38" 8001

. • 7  3 760 ‘ 
[3 040,4 480]

- ' 15.8 . 
114.0,17.7]

9212 3 005 900 
2 559 500.3 452 200'

’ /  . 4360 < /: 
[3710,5010]

. v ‘ 13.7 ' . - 
[11.8,15.6]

9213 3 001 700 
\2 488 200,3 615 1001

5 430 
M M0,6 120]

13.7
.'111.7,15.7]

9214 ■ 3 156 700 
[2 718 400,3 694 900]

4 090 
[3390,4 790]

15.4. 
[13.8,17.1]

93i1 3 095 600
■2 650 900,3 640 200]

3 760 ' 
[3130,4 400]

. 15.6 
[13.9,17.4]

9312 3 193100 
[2 686 400,3 699 9001

4360  
13 700,5 0101

’ 13.5
• • [11.5,15.5]

9313 3180 600 
12 703 600,3 673 600]

5440  
14.820,6 0501

' 13.5 ■
. ‘ .111.8,15.21

sew ' '■ 3379 itiO 
[2 878 700,3 879 400]

4 090 
[3540,4 6401

15.3
[13.7,16.81

9411 3 385100 
[2 990 600,3 779 500]

’ -  3 760 
[3190,4 320]

15.5
[13.6,17.4]

' '• -9412 ■ . 3477400
[3 023 800,3 931 lOOj

4 360 
£3 690,5 040]'

13.4
[11.5,15.3]

94t3 3 432 500 
13 030 100,3 834 900]

’ ’5*430 ‘ ' 
14 800,6 070]

13.3
[11.1,15.6]

9414 3 845 400 4 030 14.8
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Year-qtr S: Average number of 
vehicles (units)

D : Average distance 
travelled (km)

E: Weighted fuel 
consumption rates 

(litres/100 km)
95t1 3 376 500 3 920 14.0
95t2 3 723 800 4 160 12.9

95t3 3 329 000 5 730 14.1

95t4 3 612 600 4 200 14.7
96t1 3 618 000 3 320 15.2
96t2 3 668 500 4 240 13.6
9613 3 836 300 5 230 13.5

Legend: Numbers in the shaded area correspond to predictions, while other entries refer to 
adjusted survey-based estimates. In the shaded area, the second entry represents a 95% 
confidence interval on predictions. Numbers are rounded to meet Statistics Canada’s precision 
criteria. Precisely, estimates of the number of vehicles are rounded to the nearest hundred, the 
average distance estimates are rounded to the nearest ten and estimates of the average fuel 
consumption rate are rounded to the first decimal point.
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Figure C.1: Comparison of predictions of the 
average number of cars obtained by 

estimating different model types
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Figure C.2: Comparison of predictions of 
the average number of light trucks and 
vans obtained by estimating different 

model types
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Figure C.3: Comparison of predictions of the 
average distance travelled by car obtained 

by estimating different model types
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Figure C.4: Comparison of predictions of 
the average distance travelled by light 
trucks and vans obtained by estimating 

different model types
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Figure C.5: Comparison of predictions of the 
average distance travelled by vehicle type
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Figure C.6: Comparison of predictions of the 
average weighted fuel consumption rates of 
cars obtained by estimating different model 

types
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Figure C.8: Comparison of predictions of the 
weighted fuel consumption rates by vehicle

type
25

-Cars

• Light trucks 
and vans

T

O) F *
IN  00

r "ct -st -st- "st
"p w  *5P=*> •4—’ •#>•* «8-=*
W S O) r- 0 U)
00 00 00 O) Q) a>

4-0 
§

Year-quarter

Figure C.7: Comparison of predictions of 
the average weighted fuel consumption 

rates of light trucks and vans obtained by 
estimating different model types
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This appendix relates to the stability and robustness checks of the model 

specification performed in Chapter 6. Firstly, the root mean squared error (RMSE) results 

obtained by enlarging the bounds of the prediction period to encompass parts of the 

survey samples are presented in Tables D.1-D.6. Secondly, a selection of figures are 

provided to support the argument of Section 6.2 regarding the choice of the model type. 

Thirdly, Tables D.7-D.8 summarize the information criteria (AIC and BIC) used, in 

Section 6.3, to determine the number of lagged dependent variables included in the 

GVAR model formulations for cars and light trucks/vans, respectively. Competing model 

specifications considered, in Section 6.4, for predicting the average number of light 

trucks and vans are described in Table D.9. Resulting predictions are compared in 

Figure D.6. Tables D.10-D.12 provide the RMSE results used in selecting, among them, 

the best formulation for prediction purposes. The last figure illustrates the results of the 

sensitivity analysis to the prior choice performed in Section 6.6.
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Table D.1 Root mean squared errors on predictions from the different model
types obtained by removing observations at the end of the PCS
sampling period

Model 1 obs. 2 obs. 3 obs. 4 obs. 5 obs. 6 obs. 7 obs. 8 obs.

UN 0.477 0.414 0.286 0.200 0.164 0.127 0.118 0.117

LAG(1) 0.348 0.254 0.164 0.129 0.097 0.115 0.158 0.159

AR(4) 0.473 0.630 0.336 0.311 0.543 0.388 0.382 0.486

SUR 0.100 0.109 0.076 0.076 0.060 0.053 0.063 0.092

PVAR(1) 0.212 0.099 0.065 0.063 0.132 0.121 0.094 0.056

PVAR(2) 0.178 0.094 0.075 0.046 0.132 0.074 0.092 0.081

PVAR(3) 0.195 0.095 0.061 0.059 0.128 0.133 0.113 6.042

PVAR(4) 0.168 0.124 0.066 0.051 0.138 0.091 — —

PVAR(5) 0.241 — — 0.053 — — — —

GVAR(1) 0.057 0.092 0.056 0.036 0.056 0.066 0.074 0.030

GVAR(2) 0.039 0.088 0.052 0.029 0.077 0.072 0.089 0.092

GVAR(3) 0.026 0.077 0.045 0.031 0.062 0.052 0.061 0.104

GVAR(4) 0.053 0.077 0.054 0.034 0.033 0.099 0.063 —

GVAR(5) 0.026 0.092 0.046 — — — — —

Legend: The second line corresponds to the simple linear regression model and the third adds a 
four-period lagged dependent variable to the former. The fourth line corresponds to the simple 
linear regression model with AR(4) errors. The fifth line provides results for the SUR model. PVAR 
and GVAR refer, respectively, to the pure and generalized VAR models. The numbers in 
parentheses give the numbers of lags of the dependent variables included in the model 
specification. Dashes stand for results that could not be computed either because the estimation 
process did not converge or because the number of degrees was insufficient for estimation.
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Table D.2 Root mean squared errors on predictions from the different model
types obtained by removing observations at the beginning of the
NaPVUS sampling period

Model 1 obs. 2 obs. 3 obs. 4 obs. 5 obs. 6 obs. 7 obs. 8 obs.

LIN 1.821 1.083 0.948 0.787 0.725 0.658 0.619 0.618

LAG(1) 1.844 1.106 0.938 0.783 0.721 0.654 0.614 0.587

AR(4) 1.646 0.976 0.822 0.698 0.624 0.598 0.578 0.604

SUR 1.565 0.932 0.783 0.620 0.538 0.477 0.443 0.607

PVAR(1) 1.702 1.069 0.900 0.738 0.600 0.612 0.529 0.539

PVAR(2) 1.696 — 0.868 0.718 0.695 5.001 0.596 0.540

PVAR(3) 1.717 — — 0.751 0.606 0.542 0.582 0.507

PVAR(4) 1.675 1.040 0.437 0.774 0.711 0.578 0.613 0.521

PVAR(5) 1.643 — — — — — — 0.486

GVAR(1) 1.657 0.993 0.824 0.663 0.569 0.486 0.439 0.503

GVAR(2) 1.657 0.995 — 0.655 0.557 0.507 0.445 0.513

GVAR(3) 1.644 0.977 0.805 0.636 0.541 0.478 0.670 0.482

GVAR(4) 1.632 0.978 0.807 0.689 0.526 0.452 0.409 0.512

GVAR(5) 1.641 0.972 0.790 0.626 0.532 25.934 0.379 —

Legend: The second line corresponds to the simp e linear regression model and the third adds a
four-period lagged dependent variable to the former. The fourth line corresponds to the simple 
linear regression model with AR(4) errors. The fifth line provides results for the SUR model. PVAR 
and GVAR refer, respectively, to the pure and generalized VAR models. The numbers in 
parentheses give the numbers of lags of the dependent variables included in the model 
specification. Dashes stand for results that could not be computed either because the estimation 
process did not converge or because the number of degrees was insufficient for estimation.
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Table D.3: Root mean squared errors on predictions from the different model
types obtained by adding observations at both ends of the prediction
period

Model 1 obs. 2 obs. 3 obs. 4 obs. 5 obs. 6 obs. 7 obs. 8 obs.

UN 0.990 0.633 0.542 0.452 0.435 0.371 0.320 0.327

LAG(1) 0.965 0.606 0.516 0.426 0.387 0.330 0.274 0.309

AR(4) 0.639 0.376 0.329 0.309 0.286 0.279 0.238 0.225

SUR 0.797 0.499 0.413 0.321 0.294 0.261 0.237 0.317

PVAR(1) 0.818 0.567 0.418 0.405 0.268 0.484 0.302 0.316

PVAR(2) 0.907 0.546 13.860 0.360 0.236 0.286 0.294 0.345

PVAR(3) 0.787 0.969 0.416 0.360 — 0.339 — 0.307

PVAR(4) 0.842 0.419 0.419 — 0.330 0.315 0.201 —

PVAR(5) — 0.567 — — — — — —

GVAR(1) 0.813 0.535 0.434 0.337 0.294 0.244 0.774 0.279

GVAR(2) 0.813 0.526 0.459 0.359 0.420 0.511 0.775 0.231

GVAR(3) 0.785 0.514 0.441 0.320 0.223 0.556 — —

GVAR(4) 0.782 0.502 0.421 — 0.156 — — —

GVAR(5) 0.791 0.517 — — — — — —

Legend: The second line corresponds to the simp e linear regression model and the third adds a
four-period lagged dependent variable to the former. The fourth line corresponds to the simple 
linear regression model with AR(4) errors. The fifth line provides results for the SUR model. PVAR 
and GVAR refer, respectively, to the pure and generalized VAR models. The numbers in 
parentheses give the numbers of lags of the dependent variables included in the model 
specification. Dashes stand for results that could not be computed either because the estimation 
process did not converge or because the number of degrees was insufficient for estimation.
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Table D.4 Models by ascending order of root mean squared errors on
predictions obtained by removing observations at the end of the FCS
sampling period

1 obs. 2 obs. 3 obs. 4 obs. 5 obs. 6 obs. 7 obs. 8 obs.

GVAR(5) GVAR(4) GVAR(3) GVAR(2) GVAR(4) GVAR(3) GVAR(3) GVAR(1)
GVAR(3) GVAR(3) GVAR(5) GVAR(3) GVAR(1) GVAR(4) SUR PVAR(1)
GVAR(2) GVAR(2) GVAR(2) GVAR(4) SUR GVAR(1) GVAR(4) PVAR(3)
GVAR(4) GVAR(5) GVAR(4) GVAR(1) GVAR(3) GVAR(2) GVAR(1) PVAR(2)
GVAR(1) GVAR(1) GVAR(1) PVAR(2) GVAR(2) SUR GVAR(2) GVAR((2)
SUR PVAR(2) PVAR(3) PVAR(4L LAG(1) PVAR(2) PVAR(2) SUR
PVAR(4) PVAR(3) PVAR(1) PVAR(5) PVAR(3) PVAR(4) PVAR(1) GVAR(3)
PVAR(2) PVAR(1) PVAR(4) PVAR(3) PVAR(1) LAG(1) PVAR(3) LIN
PVAR(3) PVAR(4) PVAR(2) PVAR(1) PVAR(2) PVAR(1) LIN LAG(1)
PVAR(1) SUR SUR SUR PVAR(4) LIN LAG(1) AR(4)
PVAR(5) LAG(1) LAG(1) LAG(1) LIN PVAR(3) AR(4)
LAG(1) UN LIN LIN AR(4) AR(4)
AR(4) AR(4) AR(4) AR(4)
LIN

Table D.5 Models by ascending order of root mean squared errors on 
predictions obtained by removing observations at the beginning of 
the NaPVUS sampling period

1 obs. 2 obs. 3 obs. 4 obs. 5 obs. 6 obs. 7 obs. 8 obs.

SUR SUR PVAR(4) SUR GVAR(4) GVAR(4) GVAR(5) GVAR(3)
GVAR(4) GVAR(5) SUR GVAR(5) GVAR(5) SUR GVAR(4) PVAR(5)
GVAR(5) AR(4) GVAR(5) GVAR(3) SUR GVAR(3) GVAR(1) GVAR(1)
PVAR(5) GVAR(3) GVAR(3) GVAR(2) GVAR(3) GVAR(1) SUR PVAR(3)
GVAR(3) GVAR(4) GVAR(4) GVAR(1) GVAR(2) GVAR(2) GVAR(2) GVAR(4)
AR(4) GVAR(1) AR(4) GVAR(4) GVAR(1) PVAR(3) PVAR(1) GVAR(2)
GVAR(1) GVAR(2) GVAR(1) AR(4) PVAR(1) PVAR(4) AR(4) PVAR(4)
GVAR(2) PVAR(4) PVAR(2) PVAR(2) PVAR(3) AR(4) PVAR(3) PVAR(1)
PVAR(4) PVAR(1) PVAR(1) PVAR(1) AR(4) PVAR(1) PVAR(2) PVAR(2)
PVAR(2) LIN LAG(1) PVAR(3) PVAR (2) LAG(1) PVAR(4) LAG(1)
PVAR(1) LAG(1) LIN PVAR(4) PVAR(4) LIN LAG(1) AR(4)
PVAR(3) LAG(1) LAG(1) LIN SUR
LIN LIN LIN GVAR(3) LIN
LAG(1)
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Table D.6 Models by ascending order of root mean squared errors on
predictions obtained by adding observations at both ends of the
prediction period

1 obs. 2 obs. 3 obs. 4 obs. 5 obs. 6 obs. 7 obs. 8 obs.

AR(4) AR(4) AR(4) AR(4) ^ GVAR(4) GVAR(1) PVAR(4) AR(4)
GVAR(4) SUR SUR GVAR(3) GVAR(3) SUR SUR GVAR(2)
GVAR(3) GVAR(4) PVAR(3) SUR PVAR(2) AR(4) AR(4) GVAR(1)
PVAR(3) GVAR(3) PVAR(1) GVAR(1) PVAR(1) PVAR(2) LAG(1) PVAR(3)
GVAR(5) GVAR(5) PVAR(4) GVAR(2) AR(4) PVAR(4) PVAR(2) LAG(1)
SUR GVAR(2) GVAR(4) PVAR(2) GVAR(1) LAG(1) PVAR(1) PVAR(1)
GVAR(1) GVAR(1) GVAR(1) PVAR(3) SUR PVAR (3) LIN SUR
GVAR(2) PVAR(2) GVAR(3) PVAR(1) PVAR(4) LIN GVAR(1) LIN
PVAR(1) PVAR(5) GVAR(2) LAG(1) ... LAG(1) PVAR(1) GVAR(2) PVAR(2)
PVAR(4) PVAR(1) LAG(1) LIN GVAR(2) GVAR(2)
PVAR(2) PVAR(4) LIN LIN GVAR{3)
LAG(1) LAG(1)
LIN LIN

PVAR(3)

Figure D.1: Predictions of the simple linear 
regression model with AR(4) errors obtained by 

removing observations from the NaPVUS
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Figure D.2: Predictions of the simple linear 
regression model with AR(4) errors obtained by 

removing observations from the FCS
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Figure D.3: Comparison o f the predictions 
of the linear regression model with AR(4) 

errors obtained by removing one 
observation from the survey sample
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Figure D.5: Comparison of the competing 
models' performance at predicting two 

observations from the NaPVUS
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Figure D.4: Predictions of the GVAR(1)
model obtained by removing observations

from the NaPVUS
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Table D.7 Information criteria to determine the order (p) of generalized vector

p ABIC AAIC LR Pi P2 T"(p+1)
1 -37.735 -18.028 -0.028 25 34 66
2 -37.580 -18.011 -0.011 34 43 65
3 -37.171 -17.741 0.259 43 52 64
4 -37.559 -18.271 -0.271 52 61 63
5 -36.969 -17.824 0.176 61 70 62

Note: Because of degrees of freedom constraints, we were unable to estimate the mode with 6 lags.

Table D.8 Information criteria to determine the order (p) of generalized vector 
autoregressive models GVAR(p) for the light trucks and vans 
variables

P ABIC AAIC LR Pi P2 T-fp+1)
1 -36.318 -17.874 0.126 25 34 58
2 -35.049 -16.661 1.339 34 43 57
3 -40.282 -22.053 -4.053 43 52 56
4 -36.048 -17.982 0.018 52 61 55

1/3 -54.930 -18.155 17.845 22 40 57
Note: Because of degrees of freedom constraints, we were unable to estimate the mode with 6 lags.

Table D.9: Exogenous explanatory variables involved in alternative

Dep. var. Vehicle stock (S) Average distance ( D ) Fuel efficiency iE)
Indep. var. Var 1 Var 2 Var 3 Var 4 Var 1 Var 2 Var 3 Var 4 Var 1 Var 2 Var 3 Var 4
Constant X X X X X X X X X X X X
REGIST X X
PCREGIST X X
FCR X X
VPRICE X X X
I RATES X
ARVDPC X X X
QNATINC X X X
QCPI X X X
QUNLFP X X X
QFSALES X X
FALL X X X X X X X X X X X
WIN X X X X X X X X X X X
SPR X X X X X X X X X X X
TEMP X
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Figure D.6: Comparison of predictions of 
the average number of light trucks and 

vans based on different specifications of 
the simple linear regression model
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Table D.10: Root mean squared errors on predictions from the GVAR(1) model
with various specifications obtained by removing observations at the 
end of the FCS sampling period

Nu. of missing obs. Variation 1 Variation 2 Variation 3

1 observation 0.104 0.057 0.146

2 observations 0.128 0.092 0.070

3 observations 0.073 0.056 0.048

4 observations 0.072 0.036 0.036
5 observations 0.065 0.056 0.088

6 observations 0.041 0.066 0.059

7 observations 0.042 0.074 0.050

8 observations 0.037 0.030 0.039
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Table D.11: Root mean squared errors on predictions from the GVAR(1) model
with various specifications obtained by removing observations at the
beginning of the NaPVUS sampling period

Nu. of missing obs. Variation 1 Variation 2 Variation 3
1 observation 1.720 1.657 1.778

2 observations 1.019 0.993 1.061

3 observations 0.838 0.824 0.908

4 observations 0.666 0.663 0.720

5 observations 0.585 0.569 0.630

6 observations 0.503 0.486 0.593
7 observations 0.446 0.439 0.568
8 observations 0.541 0.503 0.462

Table D.12: Root mean squared errors on predictions from the GVAR(1) model 
with various specifications obtained by adding observations at both 
ends of the prediction period

Nu. of missing obs. Variation 1 Variation 2 Variation 3
1 observation 0.823 0.813 0.842
2 observations 0.542 0.535 0.582
3 observations 0.458 0.434 0.434
4 observations 0.353 0.337 0.341
5 observations 0.246 0.294 0.329
6 observations 0.252 0.244 0.219
7 observations — 0.774 --------

8 observations 0.137 0.279 0.307
Note: RMSE results are not reported when the estimation process has not converged.
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Figure D.7: Results of the sensitivity 
analysis to the prior choice on 

predictions of the number of light trucks 
and vans stock derived from the GVAR(1) 

model
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